extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D14⋊C4)⋊1C2 = (C2×Dic7)⋊3D4 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4):1C2 | 448,206 |
(C2×D14⋊C4)⋊2C2 = (C2×C4)⋊6D28 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4):2C2 | 448,473 |
(C2×D14⋊C4)⋊3C2 = C23.44D28 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 112 | | (C2xD14:C4):3C2 | 448,489 |
(C2×D14⋊C4)⋊4C2 = C24.12D14 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4):4C2 | 448,490 |
(C2×D14⋊C4)⋊5C2 = C24.13D14 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4):5C2 | 448,491 |
(C2×D14⋊C4)⋊6C2 = C23.45D28 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4):6C2 | 448,492 |
(C2×D14⋊C4)⋊7C2 = C24.14D14 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4):7C2 | 448,493 |
(C2×D14⋊C4)⋊8C2 = C23⋊2D28 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4):8C2 | 448,494 |
(C2×D14⋊C4)⋊9C2 = C23.16D28 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4):9C2 | 448,495 |
(C2×D14⋊C4)⋊10C2 = (C2×D28)⋊10C4 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4):10C2 | 448,522 |
(C2×D14⋊C4)⋊11C2 = C23.28D28 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4):11C2 | 448,747 |
(C2×D14⋊C4)⋊12C2 = C2×C4.D28 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4):12C2 | 448,929 |
(C2×D14⋊C4)⋊13C2 = C2×C23.23D14 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4):13C2 | 448,1242 |
(C2×D14⋊C4)⋊14C2 = C2×C28⋊7D4 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4):14C2 | 448,1243 |
(C2×D14⋊C4)⋊15C2 = (C2×C28)⋊5D4 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4):15C2 | 448,205 |
(C2×D14⋊C4)⋊16C2 = C2×C22⋊D28 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 112 | | (C2xD14:C4):16C2 | 448,940 |
(C2×D14⋊C4)⋊17C2 = C2×D14.D4 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4):17C2 | 448,941 |
(C2×D14⋊C4)⋊18C2 = C2×Dic7.D4 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4):18C2 | 448,944 |
(C2×D14⋊C4)⋊19C2 = C2×C22.D28 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4):19C2 | 448,945 |
(C2×D14⋊C4)⋊20C2 = C2×C4⋊D28 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4):20C2 | 448,959 |
(C2×D14⋊C4)⋊21C2 = D4⋊5D28 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 112 | | (C2xD14:C4):21C2 | 448,1007 |
(C2×D14⋊C4)⋊22C2 = C42⋊16D14 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 112 | | (C2xD14:C4):22C2 | 448,1009 |
(C2×D14⋊C4)⋊23C2 = C14.1212+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 112 | | (C2xD14:C4):23C2 | 448,1107 |
(C2×D14⋊C4)⋊24C2 = C14.1222+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 112 | | (C2xD14:C4):24C2 | 448,1111 |
(C2×D14⋊C4)⋊25C2 = C14.372+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 112 | | (C2xD14:C4):25C2 | 448,1058 |
(C2×D14⋊C4)⋊26C2 = C14.462+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 112 | | (C2xD14:C4):26C2 | 448,1070 |
(C2×D14⋊C4)⋊27C2 = C14.562+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 112 | | (C2xD14:C4):27C2 | 448,1097 |
(C2×D14⋊C4)⋊28C2 = (C2×C4)⋊9D28 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4):28C2 | 448,199 |
(C2×D14⋊C4)⋊29C2 = C2×D7×C22⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 112 | | (C2xD14:C4):29C2 | 448,937 |
(C2×D14⋊C4)⋊30C2 = C2×Dic7⋊4D4 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4):30C2 | 448,938 |
(C2×D14⋊C4)⋊31C2 = C2×D14⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4):31C2 | 448,942 |
(C2×D14⋊C4)⋊32C2 = C2×D28⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4):32C2 | 448,956 |
(C2×D14⋊C4)⋊33C2 = C2×D14.5D4 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4):33C2 | 448,958 |
(C2×D14⋊C4)⋊34C2 = C42⋊11D14 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 112 | | (C2xD14:C4):34C2 | 448,998 |
(C2×D14⋊C4)⋊35C2 = C42⋊17D14 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 112 | | (C2xD14:C4):35C2 | 448,1013 |
(C2×D14⋊C4)⋊36C2 = C14.402+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 112 | | (C2xD14:C4):36C2 | 448,1063 |
(C2×D14⋊C4)⋊37C2 = C14.532+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 112 | | (C2xD14:C4):37C2 | 448,1090 |
(C2×D14⋊C4)⋊38C2 = (C2×C4)⋊3D28 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4):38C2 | 448,525 |
(C2×D14⋊C4)⋊39C2 = C24.21D14 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4):39C2 | 448,757 |
(C2×D14⋊C4)⋊40C2 = C42⋊10D14 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 112 | | (C2xD14:C4):40C2 | 448,980 |
(C2×D14⋊C4)⋊41C2 = C2×C23⋊D14 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 112 | | (C2xD14:C4):41C2 | 448,1252 |
(C2×D14⋊C4)⋊42C2 = C2×Dic7⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4):42C2 | 448,1255 |
(C2×D14⋊C4)⋊43C2 = C2×C28.23D4 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4):43C2 | 448,1267 |
(C2×D14⋊C4)⋊44C2 = C14.1452+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 112 | | (C2xD14:C4):44C2 | 448,1282 |
(C2×D14⋊C4)⋊45C2 = C2×C4×D28 | φ: trivial image | 224 | | (C2xD14:C4):45C2 | 448,926 |
(C2×D14⋊C4)⋊46C2 = C2×C4×C7⋊D4 | φ: trivial image | 224 | | (C2xD14:C4):46C2 | 448,1241 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D14⋊C4).1C2 = C22.58(D4×D7) | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4).1C2 | 448,198 |
(C2×D14⋊C4).2C2 = D14⋊(C4⋊C4) | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4).2C2 | 448,201 |
(C2×D14⋊C4).3C2 = D14⋊C4⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4).3C2 | 448,202 |
(C2×D14⋊C4).4C2 = D14⋊C4⋊5C4 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4).4C2 | 448,203 |
(C2×D14⋊C4).5C2 = C2.(C4×D28) | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4).5C2 | 448,204 |
(C2×D14⋊C4).6C2 = (C2×C4).20D28 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4).6C2 | 448,207 |
(C2×D14⋊C4).7C2 = (C2×C4).21D28 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4).7C2 | 448,208 |
(C2×D14⋊C4).8C2 = (C22×D7).9D4 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4).8C2 | 448,209 |
(C2×D14⋊C4).9C2 = (C22×D7).Q8 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4).9C2 | 448,210 |
(C2×D14⋊C4).10C2 = (C2×C42)⋊D7 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4).10C2 | 448,474 |
(C2×D14⋊C4).11C2 = C4⋊(D14⋊C4) | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4).11C2 | 448,521 |
(C2×D14⋊C4).12C2 = D14⋊C4⋊6C4 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4).12C2 | 448,523 |
(C2×D14⋊C4).13C2 = D14⋊C4⋊7C4 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4).13C2 | 448,524 |
(C2×D14⋊C4).14C2 = (C2×C28).289D4 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4).14C2 | 448,526 |
(C2×D14⋊C4).15C2 = (C2×C28).290D4 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4).15C2 | 448,527 |
(C2×D14⋊C4).16C2 = C2×C42⋊2D7 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4).16C2 | 448,931 |
(C2×D14⋊C4).17C2 = (C2×C28).33D4 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4).17C2 | 448,211 |
(C2×D14⋊C4).18C2 = C2×D14⋊Q8 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4).18C2 | 448,961 |
(C2×D14⋊C4).19C2 = C2×D14⋊2Q8 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4).19C2 | 448,962 |
(C2×D14⋊C4).20C2 = C14.512+ 1+4 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 112 | | (C2xD14:C4).20C2 | 448,1087 |
(C2×D14⋊C4).21C2 = (C22×D7)⋊C8 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 112 | | (C2xD14:C4).21C2 | 448,25 |
(C2×D14⋊C4).22C2 = D14⋊C42 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4).22C2 | 448,200 |
(C2×D14⋊C4).23C2 = C2×C4⋊C4⋊7D7 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4).23C2 | 448,955 |
(C2×D14⋊C4).24C2 = (C2×C4).45D28 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4).24C2 | 448,528 |
(C2×D14⋊C4).25C2 = (C22×Q8)⋊D7 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4).25C2 | 448,765 |
(C2×D14⋊C4).26C2 = C2×C4⋊C4⋊D7 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4).26C2 | 448,965 |
(C2×D14⋊C4).27C2 = C2×D14⋊3Q8 | φ: C2/C1 → C2 ⊆ Out C2×D14⋊C4 | 224 | | (C2xD14:C4).27C2 | 448,1266 |
(C2×D14⋊C4).28C2 = C4×D14⋊C4 | φ: trivial image | 224 | | (C2xD14:C4).28C2 | 448,472 |
(C2×D14⋊C4).29C2 = C2×C42⋊D7 | φ: trivial image | 224 | | (C2xD14:C4).29C2 | 448,925 |