direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×C4⋊C4⋊7D7, C4⋊C4⋊51D14, (C2×C14).46C24, C28.88(C22×C4), C14.12(C23×C4), C4⋊Dic7⋊70C22, C14⋊3(C42⋊C2), (C2×C28).578C23, (C4×Dic7)⋊75C22, D14.18(C22×C4), (C22×C4).359D14, C22.22(C23×D7), D14⋊C4.115C22, Dic7.23(C22×C4), (C23×D7).97C22, C23.325(C22×D7), C22.73(D4⋊2D7), (C22×C14).395C23, (C22×C28).358C22, C22.33(Q8⋊2D7), (C2×Dic7).185C23, (C22×D7).153C23, (C22×Dic7).210C22, (C2×C4×D7)⋊6C4, (C14×C4⋊C4)⋊8C2, C4.91(C2×C4×D7), (C2×C4⋊C4)⋊25D7, (C4×D7)⋊12(C2×C4), C7⋊3(C2×C42⋊C2), (C2×C4×Dic7)⋊32C2, (D7×C22×C4).4C2, C2.14(D7×C22×C4), (C7×C4⋊C4)⋊43C22, C22.72(C2×C4×D7), (C2×C4⋊Dic7)⋊38C2, C14.71(C2×C4○D4), (C2×C4).161(C4×D7), C2.4(C2×D4⋊2D7), C2.1(C2×Q8⋊2D7), (C2×C28).128(C2×C4), (C2×D14⋊C4).23C2, (C2×C4×D7).243C22, (C22×D7).65(C2×C4), (C2×C4).265(C22×D7), (C2×C14).171(C4○D4), (C2×C14).151(C22×C4), (C2×Dic7).111(C2×C4), SmallGroup(448,955)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×C4⋊C4⋊7D7
G = < a,b,c,d,e | a2=b4=c4=d7=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, be=eb, cd=dc, ece=b2c, ede=d-1 >
Subgroups: 1284 in 330 conjugacy classes, 167 normal (21 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C7, C2×C4, C2×C4, C23, C23, D7, C14, C14, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C24, Dic7, Dic7, C28, C28, D14, D14, C2×C14, C2×C14, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C42⋊C2, C23×C4, C4×D7, C2×Dic7, C2×Dic7, C2×C28, C2×C28, C22×D7, C22×D7, C22×C14, C2×C42⋊C2, C4×Dic7, C4⋊Dic7, D14⋊C4, C7×C4⋊C4, C2×C4×D7, C22×Dic7, C22×Dic7, C22×C28, C22×C28, C23×D7, C4⋊C4⋊7D7, C2×C4×Dic7, C2×C4⋊Dic7, C2×D14⋊C4, C14×C4⋊C4, D7×C22×C4, C2×C4⋊C4⋊7D7
Quotients: C1, C2, C4, C22, C2×C4, C23, D7, C22×C4, C4○D4, C24, D14, C42⋊C2, C23×C4, C2×C4○D4, C4×D7, C22×D7, C2×C42⋊C2, C2×C4×D7, D4⋊2D7, Q8⋊2D7, C23×D7, C4⋊C4⋊7D7, D7×C22×C4, C2×D4⋊2D7, C2×Q8⋊2D7, C2×C4⋊C4⋊7D7
(1 134)(2 135)(3 136)(4 137)(5 138)(6 139)(7 140)(8 127)(9 128)(10 129)(11 130)(12 131)(13 132)(14 133)(15 120)(16 121)(17 122)(18 123)(19 124)(20 125)(21 126)(22 113)(23 114)(24 115)(25 116)(26 117)(27 118)(28 119)(29 162)(30 163)(31 164)(32 165)(33 166)(34 167)(35 168)(36 155)(37 156)(38 157)(39 158)(40 159)(41 160)(42 161)(43 148)(44 149)(45 150)(46 151)(47 152)(48 153)(49 154)(50 141)(51 142)(52 143)(53 144)(54 145)(55 146)(56 147)(57 190)(58 191)(59 192)(60 193)(61 194)(62 195)(63 196)(64 183)(65 184)(66 185)(67 186)(68 187)(69 188)(70 189)(71 176)(72 177)(73 178)(74 179)(75 180)(76 181)(77 182)(78 169)(79 170)(80 171)(81 172)(82 173)(83 174)(84 175)(85 218)(86 219)(87 220)(88 221)(89 222)(90 223)(91 224)(92 211)(93 212)(94 213)(95 214)(96 215)(97 216)(98 217)(99 204)(100 205)(101 206)(102 207)(103 208)(104 209)(105 210)(106 197)(107 198)(108 199)(109 200)(110 201)(111 202)(112 203)
(1 183 8 190)(2 184 9 191)(3 185 10 192)(4 186 11 193)(5 187 12 194)(6 188 13 195)(7 189 14 196)(15 169 22 176)(16 170 23 177)(17 171 24 178)(18 172 25 179)(19 173 26 180)(20 174 27 181)(21 175 28 182)(29 211 36 218)(30 212 37 219)(31 213 38 220)(32 214 39 221)(33 215 40 222)(34 216 41 223)(35 217 42 224)(43 197 50 204)(44 198 51 205)(45 199 52 206)(46 200 53 207)(47 201 54 208)(48 202 55 209)(49 203 56 210)(57 134 64 127)(58 135 65 128)(59 136 66 129)(60 137 67 130)(61 138 68 131)(62 139 69 132)(63 140 70 133)(71 120 78 113)(72 121 79 114)(73 122 80 115)(74 123 81 116)(75 124 82 117)(76 125 83 118)(77 126 84 119)(85 162 92 155)(86 163 93 156)(87 164 94 157)(88 165 95 158)(89 166 96 159)(90 167 97 160)(91 168 98 161)(99 148 106 141)(100 149 107 142)(101 150 108 143)(102 151 109 144)(103 152 110 145)(104 153 111 146)(105 154 112 147)
(1 99 15 85)(2 100 16 86)(3 101 17 87)(4 102 18 88)(5 103 19 89)(6 104 20 90)(7 105 21 91)(8 106 22 92)(9 107 23 93)(10 108 24 94)(11 109 25 95)(12 110 26 96)(13 111 27 97)(14 112 28 98)(29 57 43 71)(30 58 44 72)(31 59 45 73)(32 60 46 74)(33 61 47 75)(34 62 48 76)(35 63 49 77)(36 64 50 78)(37 65 51 79)(38 66 52 80)(39 67 53 81)(40 68 54 82)(41 69 55 83)(42 70 56 84)(113 211 127 197)(114 212 128 198)(115 213 129 199)(116 214 130 200)(117 215 131 201)(118 216 132 202)(119 217 133 203)(120 218 134 204)(121 219 135 205)(122 220 136 206)(123 221 137 207)(124 222 138 208)(125 223 139 209)(126 224 140 210)(141 169 155 183)(142 170 156 184)(143 171 157 185)(144 172 158 186)(145 173 159 187)(146 174 160 188)(147 175 161 189)(148 176 162 190)(149 177 163 191)(150 178 164 192)(151 179 165 193)(152 180 166 194)(153 181 167 195)(154 182 168 196)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)(113 114 115 116 117 118 119)(120 121 122 123 124 125 126)(127 128 129 130 131 132 133)(134 135 136 137 138 139 140)(141 142 143 144 145 146 147)(148 149 150 151 152 153 154)(155 156 157 158 159 160 161)(162 163 164 165 166 167 168)(169 170 171 172 173 174 175)(176 177 178 179 180 181 182)(183 184 185 186 187 188 189)(190 191 192 193 194 195 196)(197 198 199 200 201 202 203)(204 205 206 207 208 209 210)(211 212 213 214 215 216 217)(218 219 220 221 222 223 224)
(1 119)(2 118)(3 117)(4 116)(5 115)(6 114)(7 113)(8 126)(9 125)(10 124)(11 123)(12 122)(13 121)(14 120)(15 133)(16 132)(17 131)(18 130)(19 129)(20 128)(21 127)(22 140)(23 139)(24 138)(25 137)(26 136)(27 135)(28 134)(29 154)(30 153)(31 152)(32 151)(33 150)(34 149)(35 148)(36 147)(37 146)(38 145)(39 144)(40 143)(41 142)(42 141)(43 168)(44 167)(45 166)(46 165)(47 164)(48 163)(49 162)(50 161)(51 160)(52 159)(53 158)(54 157)(55 156)(56 155)(57 175)(58 174)(59 173)(60 172)(61 171)(62 170)(63 169)(64 182)(65 181)(66 180)(67 179)(68 178)(69 177)(70 176)(71 189)(72 188)(73 187)(74 186)(75 185)(76 184)(77 183)(78 196)(79 195)(80 194)(81 193)(82 192)(83 191)(84 190)(85 210)(86 209)(87 208)(88 207)(89 206)(90 205)(91 204)(92 203)(93 202)(94 201)(95 200)(96 199)(97 198)(98 197)(99 224)(100 223)(101 222)(102 221)(103 220)(104 219)(105 218)(106 217)(107 216)(108 215)(109 214)(110 213)(111 212)(112 211)
G:=sub<Sym(224)| (1,134)(2,135)(3,136)(4,137)(5,138)(6,139)(7,140)(8,127)(9,128)(10,129)(11,130)(12,131)(13,132)(14,133)(15,120)(16,121)(17,122)(18,123)(19,124)(20,125)(21,126)(22,113)(23,114)(24,115)(25,116)(26,117)(27,118)(28,119)(29,162)(30,163)(31,164)(32,165)(33,166)(34,167)(35,168)(36,155)(37,156)(38,157)(39,158)(40,159)(41,160)(42,161)(43,148)(44,149)(45,150)(46,151)(47,152)(48,153)(49,154)(50,141)(51,142)(52,143)(53,144)(54,145)(55,146)(56,147)(57,190)(58,191)(59,192)(60,193)(61,194)(62,195)(63,196)(64,183)(65,184)(66,185)(67,186)(68,187)(69,188)(70,189)(71,176)(72,177)(73,178)(74,179)(75,180)(76,181)(77,182)(78,169)(79,170)(80,171)(81,172)(82,173)(83,174)(84,175)(85,218)(86,219)(87,220)(88,221)(89,222)(90,223)(91,224)(92,211)(93,212)(94,213)(95,214)(96,215)(97,216)(98,217)(99,204)(100,205)(101,206)(102,207)(103,208)(104,209)(105,210)(106,197)(107,198)(108,199)(109,200)(110,201)(111,202)(112,203), (1,183,8,190)(2,184,9,191)(3,185,10,192)(4,186,11,193)(5,187,12,194)(6,188,13,195)(7,189,14,196)(15,169,22,176)(16,170,23,177)(17,171,24,178)(18,172,25,179)(19,173,26,180)(20,174,27,181)(21,175,28,182)(29,211,36,218)(30,212,37,219)(31,213,38,220)(32,214,39,221)(33,215,40,222)(34,216,41,223)(35,217,42,224)(43,197,50,204)(44,198,51,205)(45,199,52,206)(46,200,53,207)(47,201,54,208)(48,202,55,209)(49,203,56,210)(57,134,64,127)(58,135,65,128)(59,136,66,129)(60,137,67,130)(61,138,68,131)(62,139,69,132)(63,140,70,133)(71,120,78,113)(72,121,79,114)(73,122,80,115)(74,123,81,116)(75,124,82,117)(76,125,83,118)(77,126,84,119)(85,162,92,155)(86,163,93,156)(87,164,94,157)(88,165,95,158)(89,166,96,159)(90,167,97,160)(91,168,98,161)(99,148,106,141)(100,149,107,142)(101,150,108,143)(102,151,109,144)(103,152,110,145)(104,153,111,146)(105,154,112,147), (1,99,15,85)(2,100,16,86)(3,101,17,87)(4,102,18,88)(5,103,19,89)(6,104,20,90)(7,105,21,91)(8,106,22,92)(9,107,23,93)(10,108,24,94)(11,109,25,95)(12,110,26,96)(13,111,27,97)(14,112,28,98)(29,57,43,71)(30,58,44,72)(31,59,45,73)(32,60,46,74)(33,61,47,75)(34,62,48,76)(35,63,49,77)(36,64,50,78)(37,65,51,79)(38,66,52,80)(39,67,53,81)(40,68,54,82)(41,69,55,83)(42,70,56,84)(113,211,127,197)(114,212,128,198)(115,213,129,199)(116,214,130,200)(117,215,131,201)(118,216,132,202)(119,217,133,203)(120,218,134,204)(121,219,135,205)(122,220,136,206)(123,221,137,207)(124,222,138,208)(125,223,139,209)(126,224,140,210)(141,169,155,183)(142,170,156,184)(143,171,157,185)(144,172,158,186)(145,173,159,187)(146,174,160,188)(147,175,161,189)(148,176,162,190)(149,177,163,191)(150,178,164,192)(151,179,165,193)(152,180,166,194)(153,181,167,195)(154,182,168,196), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140)(141,142,143,144,145,146,147)(148,149,150,151,152,153,154)(155,156,157,158,159,160,161)(162,163,164,165,166,167,168)(169,170,171,172,173,174,175)(176,177,178,179,180,181,182)(183,184,185,186,187,188,189)(190,191,192,193,194,195,196)(197,198,199,200,201,202,203)(204,205,206,207,208,209,210)(211,212,213,214,215,216,217)(218,219,220,221,222,223,224), (1,119)(2,118)(3,117)(4,116)(5,115)(6,114)(7,113)(8,126)(9,125)(10,124)(11,123)(12,122)(13,121)(14,120)(15,133)(16,132)(17,131)(18,130)(19,129)(20,128)(21,127)(22,140)(23,139)(24,138)(25,137)(26,136)(27,135)(28,134)(29,154)(30,153)(31,152)(32,151)(33,150)(34,149)(35,148)(36,147)(37,146)(38,145)(39,144)(40,143)(41,142)(42,141)(43,168)(44,167)(45,166)(46,165)(47,164)(48,163)(49,162)(50,161)(51,160)(52,159)(53,158)(54,157)(55,156)(56,155)(57,175)(58,174)(59,173)(60,172)(61,171)(62,170)(63,169)(64,182)(65,181)(66,180)(67,179)(68,178)(69,177)(70,176)(71,189)(72,188)(73,187)(74,186)(75,185)(76,184)(77,183)(78,196)(79,195)(80,194)(81,193)(82,192)(83,191)(84,190)(85,210)(86,209)(87,208)(88,207)(89,206)(90,205)(91,204)(92,203)(93,202)(94,201)(95,200)(96,199)(97,198)(98,197)(99,224)(100,223)(101,222)(102,221)(103,220)(104,219)(105,218)(106,217)(107,216)(108,215)(109,214)(110,213)(111,212)(112,211)>;
G:=Group( (1,134)(2,135)(3,136)(4,137)(5,138)(6,139)(7,140)(8,127)(9,128)(10,129)(11,130)(12,131)(13,132)(14,133)(15,120)(16,121)(17,122)(18,123)(19,124)(20,125)(21,126)(22,113)(23,114)(24,115)(25,116)(26,117)(27,118)(28,119)(29,162)(30,163)(31,164)(32,165)(33,166)(34,167)(35,168)(36,155)(37,156)(38,157)(39,158)(40,159)(41,160)(42,161)(43,148)(44,149)(45,150)(46,151)(47,152)(48,153)(49,154)(50,141)(51,142)(52,143)(53,144)(54,145)(55,146)(56,147)(57,190)(58,191)(59,192)(60,193)(61,194)(62,195)(63,196)(64,183)(65,184)(66,185)(67,186)(68,187)(69,188)(70,189)(71,176)(72,177)(73,178)(74,179)(75,180)(76,181)(77,182)(78,169)(79,170)(80,171)(81,172)(82,173)(83,174)(84,175)(85,218)(86,219)(87,220)(88,221)(89,222)(90,223)(91,224)(92,211)(93,212)(94,213)(95,214)(96,215)(97,216)(98,217)(99,204)(100,205)(101,206)(102,207)(103,208)(104,209)(105,210)(106,197)(107,198)(108,199)(109,200)(110,201)(111,202)(112,203), (1,183,8,190)(2,184,9,191)(3,185,10,192)(4,186,11,193)(5,187,12,194)(6,188,13,195)(7,189,14,196)(15,169,22,176)(16,170,23,177)(17,171,24,178)(18,172,25,179)(19,173,26,180)(20,174,27,181)(21,175,28,182)(29,211,36,218)(30,212,37,219)(31,213,38,220)(32,214,39,221)(33,215,40,222)(34,216,41,223)(35,217,42,224)(43,197,50,204)(44,198,51,205)(45,199,52,206)(46,200,53,207)(47,201,54,208)(48,202,55,209)(49,203,56,210)(57,134,64,127)(58,135,65,128)(59,136,66,129)(60,137,67,130)(61,138,68,131)(62,139,69,132)(63,140,70,133)(71,120,78,113)(72,121,79,114)(73,122,80,115)(74,123,81,116)(75,124,82,117)(76,125,83,118)(77,126,84,119)(85,162,92,155)(86,163,93,156)(87,164,94,157)(88,165,95,158)(89,166,96,159)(90,167,97,160)(91,168,98,161)(99,148,106,141)(100,149,107,142)(101,150,108,143)(102,151,109,144)(103,152,110,145)(104,153,111,146)(105,154,112,147), (1,99,15,85)(2,100,16,86)(3,101,17,87)(4,102,18,88)(5,103,19,89)(6,104,20,90)(7,105,21,91)(8,106,22,92)(9,107,23,93)(10,108,24,94)(11,109,25,95)(12,110,26,96)(13,111,27,97)(14,112,28,98)(29,57,43,71)(30,58,44,72)(31,59,45,73)(32,60,46,74)(33,61,47,75)(34,62,48,76)(35,63,49,77)(36,64,50,78)(37,65,51,79)(38,66,52,80)(39,67,53,81)(40,68,54,82)(41,69,55,83)(42,70,56,84)(113,211,127,197)(114,212,128,198)(115,213,129,199)(116,214,130,200)(117,215,131,201)(118,216,132,202)(119,217,133,203)(120,218,134,204)(121,219,135,205)(122,220,136,206)(123,221,137,207)(124,222,138,208)(125,223,139,209)(126,224,140,210)(141,169,155,183)(142,170,156,184)(143,171,157,185)(144,172,158,186)(145,173,159,187)(146,174,160,188)(147,175,161,189)(148,176,162,190)(149,177,163,191)(150,178,164,192)(151,179,165,193)(152,180,166,194)(153,181,167,195)(154,182,168,196), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112)(113,114,115,116,117,118,119)(120,121,122,123,124,125,126)(127,128,129,130,131,132,133)(134,135,136,137,138,139,140)(141,142,143,144,145,146,147)(148,149,150,151,152,153,154)(155,156,157,158,159,160,161)(162,163,164,165,166,167,168)(169,170,171,172,173,174,175)(176,177,178,179,180,181,182)(183,184,185,186,187,188,189)(190,191,192,193,194,195,196)(197,198,199,200,201,202,203)(204,205,206,207,208,209,210)(211,212,213,214,215,216,217)(218,219,220,221,222,223,224), (1,119)(2,118)(3,117)(4,116)(5,115)(6,114)(7,113)(8,126)(9,125)(10,124)(11,123)(12,122)(13,121)(14,120)(15,133)(16,132)(17,131)(18,130)(19,129)(20,128)(21,127)(22,140)(23,139)(24,138)(25,137)(26,136)(27,135)(28,134)(29,154)(30,153)(31,152)(32,151)(33,150)(34,149)(35,148)(36,147)(37,146)(38,145)(39,144)(40,143)(41,142)(42,141)(43,168)(44,167)(45,166)(46,165)(47,164)(48,163)(49,162)(50,161)(51,160)(52,159)(53,158)(54,157)(55,156)(56,155)(57,175)(58,174)(59,173)(60,172)(61,171)(62,170)(63,169)(64,182)(65,181)(66,180)(67,179)(68,178)(69,177)(70,176)(71,189)(72,188)(73,187)(74,186)(75,185)(76,184)(77,183)(78,196)(79,195)(80,194)(81,193)(82,192)(83,191)(84,190)(85,210)(86,209)(87,208)(88,207)(89,206)(90,205)(91,204)(92,203)(93,202)(94,201)(95,200)(96,199)(97,198)(98,197)(99,224)(100,223)(101,222)(102,221)(103,220)(104,219)(105,218)(106,217)(107,216)(108,215)(109,214)(110,213)(111,212)(112,211) );
G=PermutationGroup([[(1,134),(2,135),(3,136),(4,137),(5,138),(6,139),(7,140),(8,127),(9,128),(10,129),(11,130),(12,131),(13,132),(14,133),(15,120),(16,121),(17,122),(18,123),(19,124),(20,125),(21,126),(22,113),(23,114),(24,115),(25,116),(26,117),(27,118),(28,119),(29,162),(30,163),(31,164),(32,165),(33,166),(34,167),(35,168),(36,155),(37,156),(38,157),(39,158),(40,159),(41,160),(42,161),(43,148),(44,149),(45,150),(46,151),(47,152),(48,153),(49,154),(50,141),(51,142),(52,143),(53,144),(54,145),(55,146),(56,147),(57,190),(58,191),(59,192),(60,193),(61,194),(62,195),(63,196),(64,183),(65,184),(66,185),(67,186),(68,187),(69,188),(70,189),(71,176),(72,177),(73,178),(74,179),(75,180),(76,181),(77,182),(78,169),(79,170),(80,171),(81,172),(82,173),(83,174),(84,175),(85,218),(86,219),(87,220),(88,221),(89,222),(90,223),(91,224),(92,211),(93,212),(94,213),(95,214),(96,215),(97,216),(98,217),(99,204),(100,205),(101,206),(102,207),(103,208),(104,209),(105,210),(106,197),(107,198),(108,199),(109,200),(110,201),(111,202),(112,203)], [(1,183,8,190),(2,184,9,191),(3,185,10,192),(4,186,11,193),(5,187,12,194),(6,188,13,195),(7,189,14,196),(15,169,22,176),(16,170,23,177),(17,171,24,178),(18,172,25,179),(19,173,26,180),(20,174,27,181),(21,175,28,182),(29,211,36,218),(30,212,37,219),(31,213,38,220),(32,214,39,221),(33,215,40,222),(34,216,41,223),(35,217,42,224),(43,197,50,204),(44,198,51,205),(45,199,52,206),(46,200,53,207),(47,201,54,208),(48,202,55,209),(49,203,56,210),(57,134,64,127),(58,135,65,128),(59,136,66,129),(60,137,67,130),(61,138,68,131),(62,139,69,132),(63,140,70,133),(71,120,78,113),(72,121,79,114),(73,122,80,115),(74,123,81,116),(75,124,82,117),(76,125,83,118),(77,126,84,119),(85,162,92,155),(86,163,93,156),(87,164,94,157),(88,165,95,158),(89,166,96,159),(90,167,97,160),(91,168,98,161),(99,148,106,141),(100,149,107,142),(101,150,108,143),(102,151,109,144),(103,152,110,145),(104,153,111,146),(105,154,112,147)], [(1,99,15,85),(2,100,16,86),(3,101,17,87),(4,102,18,88),(5,103,19,89),(6,104,20,90),(7,105,21,91),(8,106,22,92),(9,107,23,93),(10,108,24,94),(11,109,25,95),(12,110,26,96),(13,111,27,97),(14,112,28,98),(29,57,43,71),(30,58,44,72),(31,59,45,73),(32,60,46,74),(33,61,47,75),(34,62,48,76),(35,63,49,77),(36,64,50,78),(37,65,51,79),(38,66,52,80),(39,67,53,81),(40,68,54,82),(41,69,55,83),(42,70,56,84),(113,211,127,197),(114,212,128,198),(115,213,129,199),(116,214,130,200),(117,215,131,201),(118,216,132,202),(119,217,133,203),(120,218,134,204),(121,219,135,205),(122,220,136,206),(123,221,137,207),(124,222,138,208),(125,223,139,209),(126,224,140,210),(141,169,155,183),(142,170,156,184),(143,171,157,185),(144,172,158,186),(145,173,159,187),(146,174,160,188),(147,175,161,189),(148,176,162,190),(149,177,163,191),(150,178,164,192),(151,179,165,193),(152,180,166,194),(153,181,167,195),(154,182,168,196)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112),(113,114,115,116,117,118,119),(120,121,122,123,124,125,126),(127,128,129,130,131,132,133),(134,135,136,137,138,139,140),(141,142,143,144,145,146,147),(148,149,150,151,152,153,154),(155,156,157,158,159,160,161),(162,163,164,165,166,167,168),(169,170,171,172,173,174,175),(176,177,178,179,180,181,182),(183,184,185,186,187,188,189),(190,191,192,193,194,195,196),(197,198,199,200,201,202,203),(204,205,206,207,208,209,210),(211,212,213,214,215,216,217),(218,219,220,221,222,223,224)], [(1,119),(2,118),(3,117),(4,116),(5,115),(6,114),(7,113),(8,126),(9,125),(10,124),(11,123),(12,122),(13,121),(14,120),(15,133),(16,132),(17,131),(18,130),(19,129),(20,128),(21,127),(22,140),(23,139),(24,138),(25,137),(26,136),(27,135),(28,134),(29,154),(30,153),(31,152),(32,151),(33,150),(34,149),(35,148),(36,147),(37,146),(38,145),(39,144),(40,143),(41,142),(42,141),(43,168),(44,167),(45,166),(46,165),(47,164),(48,163),(49,162),(50,161),(51,160),(52,159),(53,158),(54,157),(55,156),(56,155),(57,175),(58,174),(59,173),(60,172),(61,171),(62,170),(63,169),(64,182),(65,181),(66,180),(67,179),(68,178),(69,177),(70,176),(71,189),(72,188),(73,187),(74,186),(75,185),(76,184),(77,183),(78,196),(79,195),(80,194),(81,193),(82,192),(83,191),(84,190),(85,210),(86,209),(87,208),(88,207),(89,206),(90,205),(91,204),(92,203),(93,202),(94,201),(95,200),(96,199),(97,198),(98,197),(99,224),(100,223),(101,222),(102,221),(103,220),(104,219),(105,218),(106,217),(107,216),(108,215),(109,214),(110,213),(111,212),(112,211)]])
100 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | ··· | 4L | 4M | ··· | 4T | 4U | ··· | 4AB | 7A | 7B | 7C | 14A | ··· | 14U | 28A | ··· | 28AJ |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 7 | 7 | 7 | 14 | ··· | 14 | 28 | ··· | 28 |
size | 1 | 1 | ··· | 1 | 14 | 14 | 14 | 14 | 2 | ··· | 2 | 7 | ··· | 7 | 14 | ··· | 14 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
100 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | - | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | D7 | C4○D4 | D14 | D14 | C4×D7 | D4⋊2D7 | Q8⋊2D7 |
kernel | C2×C4⋊C4⋊7D7 | C4⋊C4⋊7D7 | C2×C4×Dic7 | C2×C4⋊Dic7 | C2×D14⋊C4 | C14×C4⋊C4 | D7×C22×C4 | C2×C4×D7 | C2×C4⋊C4 | C2×C14 | C4⋊C4 | C22×C4 | C2×C4 | C22 | C22 |
# reps | 1 | 8 | 2 | 1 | 2 | 1 | 1 | 16 | 3 | 8 | 12 | 9 | 24 | 6 | 6 |
Matrix representation of C2×C4⋊C4⋊7D7 ►in GL6(𝔽29)
28 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 28 | 0 |
0 | 0 | 0 | 0 | 0 | 28 |
28 | 0 | 0 | 0 | 0 | 0 |
0 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 28 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 0 | 0 | 17 | 0 |
0 | 0 | 0 | 0 | 17 | 12 |
17 | 0 | 0 | 0 | 0 | 0 |
0 | 17 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 17 | 24 |
0 | 0 | 0 | 0 | 17 | 12 |
0 | 28 | 0 | 0 | 0 | 0 |
1 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 28 | 0 | 0 |
0 | 0 | 1 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
18 | 4 | 0 | 0 | 0 | 0 |
28 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 1 | 0 | 0 |
0 | 0 | 10 | 22 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 | 28 |
G:=sub<GL(6,GF(29))| [28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28],[28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,0,0,17,17,0,0,0,0,0,12],[17,0,0,0,0,0,0,17,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,17,17,0,0,0,0,24,12],[0,1,0,0,0,0,28,18,0,0,0,0,0,0,0,1,0,0,0,0,28,7,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[18,28,0,0,0,0,4,11,0,0,0,0,0,0,7,10,0,0,0,0,1,22,0,0,0,0,0,0,1,1,0,0,0,0,0,28] >;
C2×C4⋊C4⋊7D7 in GAP, Magma, Sage, TeX
C_2\times C_4\rtimes C_4\rtimes_7D_7
% in TeX
G:=Group("C2xC4:C4:7D7");
// GroupNames label
G:=SmallGroup(448,955);
// by ID
G=gap.SmallGroup(448,955);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,184,1123,297,80,18822]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^4=c^4=d^7=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=b^2*c,e*d*e=d^-1>;
// generators/relations