Copied to
clipboard

G = C2×D14⋊C4order 224 = 25·7

Direct product of C2 and D14⋊C4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D14⋊C4, C23.31D14, C22.16D28, (C2×C4)⋊8D14, D146(C2×C4), C2.3(C2×D28), (C22×C4)⋊1D7, (C22×C28)⋊1C2, C14.40(C2×D4), (C2×C14).36D4, (C22×D7)⋊3C4, C141(C22⋊C4), (C2×C28)⋊10C22, (C23×D7).2C2, C22.17(C4×D7), C14.18(C22×C4), (C2×C14).45C23, (C22×Dic7)⋊3C2, (C2×Dic7)⋊6C22, C22.20(C7⋊D4), C22.23(C22×D7), (C22×C14).37C22, (C22×D7).23C22, C72(C2×C22⋊C4), C2.19(C2×C4×D7), C2.2(C2×C7⋊D4), (C2×C14).18(C2×C4), SmallGroup(224,122)

Series: Derived Chief Lower central Upper central

C1C14 — C2×D14⋊C4
C1C7C14C2×C14C22×D7C23×D7 — C2×D14⋊C4
C7C14 — C2×D14⋊C4
C1C23C22×C4

Generators and relations for C2×D14⋊C4
 G = < a,b,c,d | a2=b14=c2=d4=1, ab=ba, ac=ca, ad=da, cbc=b-1, bd=db, dcd-1=b7c >

Subgroups: 590 in 132 conjugacy classes, 57 normal (17 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C7, C2×C4, C2×C4, C23, C23, D7, C14, C14, C22⋊C4, C22×C4, C22×C4, C24, Dic7, C28, D14, D14, C2×C14, C2×C14, C2×C22⋊C4, C2×Dic7, C2×Dic7, C2×C28, C2×C28, C22×D7, C22×D7, C22×C14, D14⋊C4, C22×Dic7, C22×C28, C23×D7, C2×D14⋊C4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22⋊C4, C22×C4, C2×D4, D14, C2×C22⋊C4, C4×D7, D28, C7⋊D4, C22×D7, D14⋊C4, C2×C4×D7, C2×D28, C2×C7⋊D4, C2×D14⋊C4

Smallest permutation representation of C2×D14⋊C4
On 112 points
Generators in S112
(1 78)(2 79)(3 80)(4 81)(5 82)(6 83)(7 84)(8 71)(9 72)(10 73)(11 74)(12 75)(13 76)(14 77)(15 59)(16 60)(17 61)(18 62)(19 63)(20 64)(21 65)(22 66)(23 67)(24 68)(25 69)(26 70)(27 57)(28 58)(29 106)(30 107)(31 108)(32 109)(33 110)(34 111)(35 112)(36 99)(37 100)(38 101)(39 102)(40 103)(41 104)(42 105)(43 91)(44 92)(45 93)(46 94)(47 95)(48 96)(49 97)(50 98)(51 85)(52 86)(53 87)(54 88)(55 89)(56 90)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 84)(2 83)(3 82)(4 81)(5 80)(6 79)(7 78)(8 77)(9 76)(10 75)(11 74)(12 73)(13 72)(14 71)(15 65)(16 64)(17 63)(18 62)(19 61)(20 60)(21 59)(22 58)(23 57)(24 70)(25 69)(26 68)(27 67)(28 66)(29 99)(30 112)(31 111)(32 110)(33 109)(34 108)(35 107)(36 106)(37 105)(38 104)(39 103)(40 102)(41 101)(42 100)(43 98)(44 97)(45 96)(46 95)(47 94)(48 93)(49 92)(50 91)(51 90)(52 89)(53 88)(54 87)(55 86)(56 85)
(1 54 15 40)(2 55 16 41)(3 56 17 42)(4 43 18 29)(5 44 19 30)(6 45 20 31)(7 46 21 32)(8 47 22 33)(9 48 23 34)(10 49 24 35)(11 50 25 36)(12 51 26 37)(13 52 27 38)(14 53 28 39)(57 101 76 86)(58 102 77 87)(59 103 78 88)(60 104 79 89)(61 105 80 90)(62 106 81 91)(63 107 82 92)(64 108 83 93)(65 109 84 94)(66 110 71 95)(67 111 72 96)(68 112 73 97)(69 99 74 98)(70 100 75 85)

G:=sub<Sym(112)| (1,78)(2,79)(3,80)(4,81)(5,82)(6,83)(7,84)(8,71)(9,72)(10,73)(11,74)(12,75)(13,76)(14,77)(15,59)(16,60)(17,61)(18,62)(19,63)(20,64)(21,65)(22,66)(23,67)(24,68)(25,69)(26,70)(27,57)(28,58)(29,106)(30,107)(31,108)(32,109)(33,110)(34,111)(35,112)(36,99)(37,100)(38,101)(39,102)(40,103)(41,104)(42,105)(43,91)(44,92)(45,93)(46,94)(47,95)(48,96)(49,97)(50,98)(51,85)(52,86)(53,87)(54,88)(55,89)(56,90), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,84)(2,83)(3,82)(4,81)(5,80)(6,79)(7,78)(8,77)(9,76)(10,75)(11,74)(12,73)(13,72)(14,71)(15,65)(16,64)(17,63)(18,62)(19,61)(20,60)(21,59)(22,58)(23,57)(24,70)(25,69)(26,68)(27,67)(28,66)(29,99)(30,112)(31,111)(32,110)(33,109)(34,108)(35,107)(36,106)(37,105)(38,104)(39,103)(40,102)(41,101)(42,100)(43,98)(44,97)(45,96)(46,95)(47,94)(48,93)(49,92)(50,91)(51,90)(52,89)(53,88)(54,87)(55,86)(56,85), (1,54,15,40)(2,55,16,41)(3,56,17,42)(4,43,18,29)(5,44,19,30)(6,45,20,31)(7,46,21,32)(8,47,22,33)(9,48,23,34)(10,49,24,35)(11,50,25,36)(12,51,26,37)(13,52,27,38)(14,53,28,39)(57,101,76,86)(58,102,77,87)(59,103,78,88)(60,104,79,89)(61,105,80,90)(62,106,81,91)(63,107,82,92)(64,108,83,93)(65,109,84,94)(66,110,71,95)(67,111,72,96)(68,112,73,97)(69,99,74,98)(70,100,75,85)>;

G:=Group( (1,78)(2,79)(3,80)(4,81)(5,82)(6,83)(7,84)(8,71)(9,72)(10,73)(11,74)(12,75)(13,76)(14,77)(15,59)(16,60)(17,61)(18,62)(19,63)(20,64)(21,65)(22,66)(23,67)(24,68)(25,69)(26,70)(27,57)(28,58)(29,106)(30,107)(31,108)(32,109)(33,110)(34,111)(35,112)(36,99)(37,100)(38,101)(39,102)(40,103)(41,104)(42,105)(43,91)(44,92)(45,93)(46,94)(47,95)(48,96)(49,97)(50,98)(51,85)(52,86)(53,87)(54,88)(55,89)(56,90), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,84)(2,83)(3,82)(4,81)(5,80)(6,79)(7,78)(8,77)(9,76)(10,75)(11,74)(12,73)(13,72)(14,71)(15,65)(16,64)(17,63)(18,62)(19,61)(20,60)(21,59)(22,58)(23,57)(24,70)(25,69)(26,68)(27,67)(28,66)(29,99)(30,112)(31,111)(32,110)(33,109)(34,108)(35,107)(36,106)(37,105)(38,104)(39,103)(40,102)(41,101)(42,100)(43,98)(44,97)(45,96)(46,95)(47,94)(48,93)(49,92)(50,91)(51,90)(52,89)(53,88)(54,87)(55,86)(56,85), (1,54,15,40)(2,55,16,41)(3,56,17,42)(4,43,18,29)(5,44,19,30)(6,45,20,31)(7,46,21,32)(8,47,22,33)(9,48,23,34)(10,49,24,35)(11,50,25,36)(12,51,26,37)(13,52,27,38)(14,53,28,39)(57,101,76,86)(58,102,77,87)(59,103,78,88)(60,104,79,89)(61,105,80,90)(62,106,81,91)(63,107,82,92)(64,108,83,93)(65,109,84,94)(66,110,71,95)(67,111,72,96)(68,112,73,97)(69,99,74,98)(70,100,75,85) );

G=PermutationGroup([[(1,78),(2,79),(3,80),(4,81),(5,82),(6,83),(7,84),(8,71),(9,72),(10,73),(11,74),(12,75),(13,76),(14,77),(15,59),(16,60),(17,61),(18,62),(19,63),(20,64),(21,65),(22,66),(23,67),(24,68),(25,69),(26,70),(27,57),(28,58),(29,106),(30,107),(31,108),(32,109),(33,110),(34,111),(35,112),(36,99),(37,100),(38,101),(39,102),(40,103),(41,104),(42,105),(43,91),(44,92),(45,93),(46,94),(47,95),(48,96),(49,97),(50,98),(51,85),(52,86),(53,87),(54,88),(55,89),(56,90)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,84),(2,83),(3,82),(4,81),(5,80),(6,79),(7,78),(8,77),(9,76),(10,75),(11,74),(12,73),(13,72),(14,71),(15,65),(16,64),(17,63),(18,62),(19,61),(20,60),(21,59),(22,58),(23,57),(24,70),(25,69),(26,68),(27,67),(28,66),(29,99),(30,112),(31,111),(32,110),(33,109),(34,108),(35,107),(36,106),(37,105),(38,104),(39,103),(40,102),(41,101),(42,100),(43,98),(44,97),(45,96),(46,95),(47,94),(48,93),(49,92),(50,91),(51,90),(52,89),(53,88),(54,87),(55,86),(56,85)], [(1,54,15,40),(2,55,16,41),(3,56,17,42),(4,43,18,29),(5,44,19,30),(6,45,20,31),(7,46,21,32),(8,47,22,33),(9,48,23,34),(10,49,24,35),(11,50,25,36),(12,51,26,37),(13,52,27,38),(14,53,28,39),(57,101,76,86),(58,102,77,87),(59,103,78,88),(60,104,79,89),(61,105,80,90),(62,106,81,91),(63,107,82,92),(64,108,83,93),(65,109,84,94),(66,110,71,95),(67,111,72,96),(68,112,73,97),(69,99,74,98),(70,100,75,85)]])

C2×D14⋊C4 is a maximal subgroup of
(C22×D7)⋊C8  C22.58(D4×D7)  (C2×C4)⋊9D28  D14⋊C42  D14⋊(C4⋊C4)  D14⋊C4⋊C4  D14⋊C45C4  C2.(C4×D28)  (C2×C28)⋊5D4  (C2×Dic7)⋊3D4  (C2×C4).20D28  (C2×C4).21D28  (C22×D7).9D4  (C22×D7).Q8  (C2×C28).33D4  (C2×C4)⋊6D28  (C2×C42)⋊D7  C23.44D28  C24.12D14  C24.13D14  C23.45D28  C24.14D14  C232D28  C23.16D28  C4⋊(D14⋊C4)  (C2×D28)⋊10C4  D14⋊C46C4  D14⋊C47C4  (C2×C4)⋊3D28  (C2×C28).289D4  (C2×C28).290D4  (C2×C4).45D28  C23.28D28  C24.21D14  (C22×Q8)⋊D7  C2×C4×D28  C2×D7×C22⋊C4  C4210D14  C4211D14  D45D28  C4216D14  C4217D14  C14.372+ 1+4  C14.402+ 1+4  C14.462+ 1+4  C14.512+ 1+4  C14.532+ 1+4  C14.562+ 1+4  C14.1212+ 1+4  C14.1222+ 1+4  C2×C4×C7⋊D4  C14.1452+ 1+4
C2×D14⋊C4 is a maximal quotient of
(C2×C28)⋊10Q8  (C2×C4)⋊6D28  C23.42D28  C23.44D28  C23.45D28  C4○D28⋊C4  (C2×Dic7)⋊6Q8  C4⋊(D14⋊C4)  (C2×D28)⋊10C4  C4⋊C436D14  C4.(C2×D28)  (C2×C4).47D28  C424D14  (C2×D28)⋊13C4  (C22×C8)⋊D7  C23.23D28  C23.46D28  D146M4(2)  (C2×D28).14C4  C23.48D28  M4(2).31D14  C23.49D28  C23.20D28  C23.28D28

68 conjugacy classes

class 1 2A···2G2H2I2J2K4A4B4C4D4E4F4G4H7A7B7C14A···14U28A···28X
order12···222224444444477714···1428···28
size11···1141414142222141414142222···22···2

68 irreducible representations

dim1111112222222
type++++++++++
imageC1C2C2C2C2C4D4D7D14D14C4×D7D28C7⋊D4
kernelC2×D14⋊C4D14⋊C4C22×Dic7C22×C28C23×D7C22×D7C2×C14C22×C4C2×C4C23C22C22C22
# reps1411184363121212

Matrix representation of C2×D14⋊C4 in GL4(𝔽29) generated by

28000
02800
0010
0001
,
1000
0100
00821
0083
,
1000
0100
0013
00028
,
17000
02800
002416
00135
G:=sub<GL(4,GF(29))| [28,0,0,0,0,28,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,8,8,0,0,21,3],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,3,28],[17,0,0,0,0,28,0,0,0,0,24,13,0,0,16,5] >;

C2×D14⋊C4 in GAP, Magma, Sage, TeX

C_2\times D_{14}\rtimes C_4
% in TeX

G:=Group("C2xD14:C4");
// GroupNames label

G:=SmallGroup(224,122);
// by ID

G=gap.SmallGroup(224,122);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,362,50,6917]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^14=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^-1,b*d=d*b,d*c*d^-1=b^7*c>;
// generators/relations

׿
×
𝔽