Extensions 1→N→G→Q→1 with N=C2×Dic14 and Q=C4

Direct product G=N×Q with N=C2×Dic14 and Q=C4
dρLabelID
C2×C4×Dic14448C2xC4xDic14448,920

Semidirect products G=N:Q with N=C2×Dic14 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×Dic14)⋊1C4 = C4⋊Dic7⋊C4φ: C4/C1C4 ⊆ Out C2×Dic14112(C2xDic14):1C4448,9
(C2×Dic14)⋊2C4 = C23.30D28φ: C4/C1C4 ⊆ Out C2×Dic14112(C2xDic14):2C4448,24
(C2×Dic14)⋊3C4 = C23.D28φ: C4/C1C4 ⊆ Out C2×Dic141128-(C2xDic14):3C4448,30
(C2×Dic14)⋊4C4 = C23⋊C45D7φ: C4/C1C4 ⊆ Out C2×Dic141128-(C2xDic14):4C4448,274
(C2×Dic14)⋊5C4 = (C2×C28)⋊Q8φ: C4/C2C2 ⊆ Out C2×Dic14448(C2xDic14):5C4448,180
(C2×Dic14)⋊6C4 = C2×Dic14⋊C4φ: C4/C2C2 ⊆ Out C2×Dic14112(C2xDic14):6C4448,461
(C2×Dic14)⋊7C4 = (C2×C28)⋊10Q8φ: C4/C2C2 ⊆ Out C2×Dic14448(C2xDic14):7C4448,463
(C2×Dic14)⋊8C4 = C2×C28.44D4φ: C4/C2C2 ⊆ Out C2×Dic14448(C2xDic14):8C4448,637
(C2×Dic14)⋊9C4 = C2×C14.Q16φ: C4/C2C2 ⊆ Out C2×Dic14448(C2xDic14):9C4448,503
(C2×Dic14)⋊10C4 = (C2×Dic7)⋊6Q8φ: C4/C2C2 ⊆ Out C2×Dic14448(C2xDic14):10C4448,508
(C2×Dic14)⋊11C4 = (C2×C4).47D28φ: C4/C2C2 ⊆ Out C2×Dic14224(C2xDic14):11C4448,538
(C2×Dic14)⋊12C4 = C424D14φ: C4/C2C2 ⊆ Out C2×Dic141124(C2xDic14):12C4448,539
(C2×Dic14)⋊13C4 = (C2×D28)⋊13C4φ: C4/C2C2 ⊆ Out C2×Dic141124(C2xDic14):13C4448,540
(C2×Dic14)⋊14C4 = C23.46D28φ: C4/C2C2 ⊆ Out C2×Dic14224(C2xDic14):14C4448,654
(C2×Dic14)⋊15C4 = C2×D284C4φ: C4/C2C2 ⊆ Out C2×Dic14112(C2xDic14):15C4448,672
(C2×Dic14)⋊16C4 = C23.20D28φ: C4/C2C2 ⊆ Out C2×Dic141124(C2xDic14):16C4448,673
(C2×Dic14)⋊17C4 = C2×Dic73Q8φ: C4/C2C2 ⊆ Out C2×Dic14448(C2xDic14):17C4448,949
(C2×Dic14)⋊18C4 = C42.87D14φ: C4/C2C2 ⊆ Out C2×Dic14224(C2xDic14):18C4448,969

Non-split extensions G=N.Q with N=C2×Dic14 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×Dic14).1C4 = C42.D14φ: C4/C1C4 ⊆ Out C2×Dic14224(C2xDic14).1C4448,21
(C2×Dic14).2C4 = C4.Dic28φ: C4/C1C4 ⊆ Out C2×Dic14448(C2xDic14).2C4448,38
(C2×Dic14).3C4 = (C2×Q8).D14φ: C4/C1C4 ⊆ Out C2×Dic141128-(C2xDic14).3C4448,35
(C2×Dic14).4C4 = D7×C4.10D4φ: C4/C1C4 ⊆ Out C2×Dic141128-(C2xDic14).4C4448,284
(C2×Dic14).5C4 = C4.8Dic28φ: C4/C2C2 ⊆ Out C2×Dic14448(C2xDic14).5C4448,13
(C2×Dic14).6C4 = C5611Q8φ: C4/C2C2 ⊆ Out C2×Dic14448(C2xDic14).6C4448,213
(C2×Dic14).7C4 = C56⋊Q8φ: C4/C2C2 ⊆ Out C2×Dic14448(C2xDic14).7C4448,235
(C2×Dic14).8C4 = D14⋊C8⋊C2φ: C4/C2C2 ⊆ Out C2×Dic14224(C2xDic14).8C4448,261
(C2×Dic14).9C4 = C42.27D14φ: C4/C2C2 ⊆ Out C2×Dic14448(C2xDic14).9C4448,362
(C2×Dic14).10C4 = (C22×C8)⋊D7φ: C4/C2C2 ⊆ Out C2×Dic14224(C2xDic14).10C4448,644
(C2×Dic14).11C4 = Dic142C8φ: C4/C2C2 ⊆ Out C2×Dic14448(C2xDic14).11C4448,41
(C2×Dic14).12C4 = Dic14⋊C8φ: C4/C2C2 ⊆ Out C2×Dic14448(C2xDic14).12C4448,364
(C2×Dic14).13C4 = C28.M4(2)φ: C4/C2C2 ⊆ Out C2×Dic14448(C2xDic14).13C4448,365
(C2×Dic14).14C4 = (C2×D28).14C4φ: C4/C2C2 ⊆ Out C2×Dic14224(C2xDic14).14C4448,663
(C2×Dic14).15C4 = C2×C4.12D28φ: C4/C2C2 ⊆ Out C2×Dic14224(C2xDic14).15C4448,670
(C2×Dic14).16C4 = C2×D28.C4φ: C4/C2C2 ⊆ Out C2×Dic14224(C2xDic14).16C4448,1197
(C2×Dic14).17C4 = C28.70C24φ: C4/C2C2 ⊆ Out C2×Dic141124(C2xDic14).17C4448,1198
(C2×Dic14).18C4 = C8×Dic14φ: trivial image448(C2xDic14).18C4448,212
(C2×Dic14).19C4 = C2×D28.2C4φ: trivial image224(C2xDic14).19C4448,1191

׿
×
𝔽