Copied to
clipboard

G = D7×C4.10D4order 448 = 26·7

Direct product of D7 and C4.10D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D7×C4.10D4, M4(2).20D14, (C4×D7).2D4, C4.150(D4×D7), C28.95(C2×D4), (C2×C28).7C23, (C2×Q8).94D14, C28.10D43C2, C4.12D287C2, (C2×Dic14).4C4, (D7×M4(2)).1C2, (Q8×C14).5C22, C4.Dic7.4C22, D14.17(C22⋊C4), Dic7.5(C22⋊C4), (C2×Dic14).46C22, (C7×M4(2)).12C22, (C2×C4×D7).2C4, (C2×Q8×D7).1C2, (C2×C4).6(C4×D7), (C2×C28).6(C2×C4), C71(C2×C4.10D4), (C2×C4×D7).3C22, C22.16(C2×C4×D7), C2.15(D7×C22⋊C4), (C2×C4).7(C22×D7), (C7×C4.10D4)⋊5C2, C14.14(C2×C22⋊C4), (C2×Dic7).3(C2×C4), (C2×C14).10(C22×C4), (C22×D7).56(C2×C4), SmallGroup(448,284)

Series: Derived Chief Lower central Upper central

C1C2×C14 — D7×C4.10D4
C1C7C14C28C2×C28C2×C4×D7C2×Q8×D7 — D7×C4.10D4
C7C14C2×C14 — D7×C4.10D4
C1C2C2×C4C4.10D4

Generators and relations for D7×C4.10D4
 G = < a,b,c,d,e | a7=b2=c4=1, d4=c2, e2=dcd-1=c-1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, ce=ec, ede-1=c-1d3 >

Subgroups: 684 in 146 conjugacy classes, 53 normal (21 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, C2×C4, Q8, C23, D7, D7, C14, C14, C2×C8, M4(2), M4(2), C22×C4, C2×Q8, C2×Q8, Dic7, Dic7, C28, C28, D14, D14, C2×C14, C4.10D4, C4.10D4, C2×M4(2), C22×Q8, C7⋊C8, C56, Dic14, C4×D7, C4×D7, C2×Dic7, C2×Dic7, C2×C28, C2×C28, C7×Q8, C22×D7, C2×C4.10D4, C8×D7, C8⋊D7, C4.Dic7, C7×M4(2), C2×Dic14, C2×Dic14, C2×C4×D7, C2×C4×D7, Q8×D7, Q8×C14, C4.12D28, C28.10D4, C7×C4.10D4, D7×M4(2), C2×Q8×D7, D7×C4.10D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22⋊C4, C22×C4, C2×D4, D14, C4.10D4, C2×C22⋊C4, C4×D7, C22×D7, C2×C4.10D4, C2×C4×D7, D4×D7, D7×C22⋊C4, D7×C4.10D4

Smallest permutation representation of D7×C4.10D4
On 112 points
Generators in S112
(1 76 58 96 99 68 86)(2 77 59 89 100 69 87)(3 78 60 90 101 70 88)(4 79 61 91 102 71 81)(5 80 62 92 103 72 82)(6 73 63 93 104 65 83)(7 74 64 94 97 66 84)(8 75 57 95 98 67 85)(9 35 46 105 54 29 20)(10 36 47 106 55 30 21)(11 37 48 107 56 31 22)(12 38 41 108 49 32 23)(13 39 42 109 50 25 24)(14 40 43 110 51 26 17)(15 33 44 111 52 27 18)(16 34 45 112 53 28 19)
(1 86)(2 87)(3 88)(4 81)(5 82)(6 83)(7 84)(8 85)(9 29)(10 30)(11 31)(12 32)(13 25)(14 26)(15 27)(16 28)(33 52)(34 53)(35 54)(36 55)(37 56)(38 49)(39 50)(40 51)(41 108)(42 109)(43 110)(44 111)(45 112)(46 105)(47 106)(48 107)(57 98)(58 99)(59 100)(60 101)(61 102)(62 103)(63 104)(64 97)(65 73)(66 74)(67 75)(68 76)(69 77)(70 78)(71 79)(72 80)
(1 7 5 3)(2 4 6 8)(9 11 13 15)(10 16 14 12)(17 23 21 19)(18 20 22 24)(25 27 29 31)(26 32 30 28)(33 35 37 39)(34 40 38 36)(41 47 45 43)(42 44 46 48)(49 55 53 51)(50 52 54 56)(57 59 61 63)(58 64 62 60)(65 67 69 71)(66 72 70 68)(73 75 77 79)(74 80 78 76)(81 83 85 87)(82 88 86 84)(89 91 93 95)(90 96 94 92)(97 103 101 99)(98 100 102 104)(105 107 109 111)(106 112 110 108)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)
(1 105 3 111 5 109 7 107)(2 110 8 112 6 106 4 108)(9 101 15 103 13 97 11 99)(10 102 12 100 14 98 16 104)(17 95 19 93 21 91 23 89)(18 92 24 94 22 96 20 90)(25 64 31 58 29 60 27 62)(26 57 28 63 30 61 32 59)(33 72 39 66 37 68 35 70)(34 65 36 71 38 69 40 67)(41 87 43 85 45 83 47 81)(42 84 48 86 46 88 44 82)(49 77 51 75 53 73 55 79)(50 74 56 76 54 78 52 80)

G:=sub<Sym(112)| (1,76,58,96,99,68,86)(2,77,59,89,100,69,87)(3,78,60,90,101,70,88)(4,79,61,91,102,71,81)(5,80,62,92,103,72,82)(6,73,63,93,104,65,83)(7,74,64,94,97,66,84)(8,75,57,95,98,67,85)(9,35,46,105,54,29,20)(10,36,47,106,55,30,21)(11,37,48,107,56,31,22)(12,38,41,108,49,32,23)(13,39,42,109,50,25,24)(14,40,43,110,51,26,17)(15,33,44,111,52,27,18)(16,34,45,112,53,28,19), (1,86)(2,87)(3,88)(4,81)(5,82)(6,83)(7,84)(8,85)(9,29)(10,30)(11,31)(12,32)(13,25)(14,26)(15,27)(16,28)(33,52)(34,53)(35,54)(36,55)(37,56)(38,49)(39,50)(40,51)(41,108)(42,109)(43,110)(44,111)(45,112)(46,105)(47,106)(48,107)(57,98)(58,99)(59,100)(60,101)(61,102)(62,103)(63,104)(64,97)(65,73)(66,74)(67,75)(68,76)(69,77)(70,78)(71,79)(72,80), (1,7,5,3)(2,4,6,8)(9,11,13,15)(10,16,14,12)(17,23,21,19)(18,20,22,24)(25,27,29,31)(26,32,30,28)(33,35,37,39)(34,40,38,36)(41,47,45,43)(42,44,46,48)(49,55,53,51)(50,52,54,56)(57,59,61,63)(58,64,62,60)(65,67,69,71)(66,72,70,68)(73,75,77,79)(74,80,78,76)(81,83,85,87)(82,88,86,84)(89,91,93,95)(90,96,94,92)(97,103,101,99)(98,100,102,104)(105,107,109,111)(106,112,110,108), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (1,105,3,111,5,109,7,107)(2,110,8,112,6,106,4,108)(9,101,15,103,13,97,11,99)(10,102,12,100,14,98,16,104)(17,95,19,93,21,91,23,89)(18,92,24,94,22,96,20,90)(25,64,31,58,29,60,27,62)(26,57,28,63,30,61,32,59)(33,72,39,66,37,68,35,70)(34,65,36,71,38,69,40,67)(41,87,43,85,45,83,47,81)(42,84,48,86,46,88,44,82)(49,77,51,75,53,73,55,79)(50,74,56,76,54,78,52,80)>;

G:=Group( (1,76,58,96,99,68,86)(2,77,59,89,100,69,87)(3,78,60,90,101,70,88)(4,79,61,91,102,71,81)(5,80,62,92,103,72,82)(6,73,63,93,104,65,83)(7,74,64,94,97,66,84)(8,75,57,95,98,67,85)(9,35,46,105,54,29,20)(10,36,47,106,55,30,21)(11,37,48,107,56,31,22)(12,38,41,108,49,32,23)(13,39,42,109,50,25,24)(14,40,43,110,51,26,17)(15,33,44,111,52,27,18)(16,34,45,112,53,28,19), (1,86)(2,87)(3,88)(4,81)(5,82)(6,83)(7,84)(8,85)(9,29)(10,30)(11,31)(12,32)(13,25)(14,26)(15,27)(16,28)(33,52)(34,53)(35,54)(36,55)(37,56)(38,49)(39,50)(40,51)(41,108)(42,109)(43,110)(44,111)(45,112)(46,105)(47,106)(48,107)(57,98)(58,99)(59,100)(60,101)(61,102)(62,103)(63,104)(64,97)(65,73)(66,74)(67,75)(68,76)(69,77)(70,78)(71,79)(72,80), (1,7,5,3)(2,4,6,8)(9,11,13,15)(10,16,14,12)(17,23,21,19)(18,20,22,24)(25,27,29,31)(26,32,30,28)(33,35,37,39)(34,40,38,36)(41,47,45,43)(42,44,46,48)(49,55,53,51)(50,52,54,56)(57,59,61,63)(58,64,62,60)(65,67,69,71)(66,72,70,68)(73,75,77,79)(74,80,78,76)(81,83,85,87)(82,88,86,84)(89,91,93,95)(90,96,94,92)(97,103,101,99)(98,100,102,104)(105,107,109,111)(106,112,110,108), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (1,105,3,111,5,109,7,107)(2,110,8,112,6,106,4,108)(9,101,15,103,13,97,11,99)(10,102,12,100,14,98,16,104)(17,95,19,93,21,91,23,89)(18,92,24,94,22,96,20,90)(25,64,31,58,29,60,27,62)(26,57,28,63,30,61,32,59)(33,72,39,66,37,68,35,70)(34,65,36,71,38,69,40,67)(41,87,43,85,45,83,47,81)(42,84,48,86,46,88,44,82)(49,77,51,75,53,73,55,79)(50,74,56,76,54,78,52,80) );

G=PermutationGroup([[(1,76,58,96,99,68,86),(2,77,59,89,100,69,87),(3,78,60,90,101,70,88),(4,79,61,91,102,71,81),(5,80,62,92,103,72,82),(6,73,63,93,104,65,83),(7,74,64,94,97,66,84),(8,75,57,95,98,67,85),(9,35,46,105,54,29,20),(10,36,47,106,55,30,21),(11,37,48,107,56,31,22),(12,38,41,108,49,32,23),(13,39,42,109,50,25,24),(14,40,43,110,51,26,17),(15,33,44,111,52,27,18),(16,34,45,112,53,28,19)], [(1,86),(2,87),(3,88),(4,81),(5,82),(6,83),(7,84),(8,85),(9,29),(10,30),(11,31),(12,32),(13,25),(14,26),(15,27),(16,28),(33,52),(34,53),(35,54),(36,55),(37,56),(38,49),(39,50),(40,51),(41,108),(42,109),(43,110),(44,111),(45,112),(46,105),(47,106),(48,107),(57,98),(58,99),(59,100),(60,101),(61,102),(62,103),(63,104),(64,97),(65,73),(66,74),(67,75),(68,76),(69,77),(70,78),(71,79),(72,80)], [(1,7,5,3),(2,4,6,8),(9,11,13,15),(10,16,14,12),(17,23,21,19),(18,20,22,24),(25,27,29,31),(26,32,30,28),(33,35,37,39),(34,40,38,36),(41,47,45,43),(42,44,46,48),(49,55,53,51),(50,52,54,56),(57,59,61,63),(58,64,62,60),(65,67,69,71),(66,72,70,68),(73,75,77,79),(74,80,78,76),(81,83,85,87),(82,88,86,84),(89,91,93,95),(90,96,94,92),(97,103,101,99),(98,100,102,104),(105,107,109,111),(106,112,110,108)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112)], [(1,105,3,111,5,109,7,107),(2,110,8,112,6,106,4,108),(9,101,15,103,13,97,11,99),(10,102,12,100,14,98,16,104),(17,95,19,93,21,91,23,89),(18,92,24,94,22,96,20,90),(25,64,31,58,29,60,27,62),(26,57,28,63,30,61,32,59),(33,72,39,66,37,68,35,70),(34,65,36,71,38,69,40,67),(41,87,43,85,45,83,47,81),(42,84,48,86,46,88,44,82),(49,77,51,75,53,73,55,79),(50,74,56,76,54,78,52,80)]])

55 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H7A7B7C8A8B8C8D8E8F8G8H14A14B14C14D14E14F28A···28F28G···28L56A···56L
order122222444444447778888888814141414141428···2828···2856···56
size11277142244141428282224444282828282224444···48···88···8

55 irreducible representations

dim1111111122222448
type++++++++++-+-
imageC1C2C2C2C2C2C4C4D4D7D14D14C4×D7C4.10D4D4×D7D7×C4.10D4
kernelD7×C4.10D4C4.12D28C28.10D4C7×C4.10D4D7×M4(2)C2×Q8×D7C2×Dic14C2×C4×D7C4×D7C4.10D4M4(2)C2×Q8C2×C4D7C4C1
# reps12112144436312263

Matrix representation of D7×C4.10D4 in GL6(𝔽113)

7910000
11200000
001000
000100
000010
000001
,
25880000
34880000
00112000
00011200
00001120
00000112
,
100000
010000
00011200
001000
001598191
0005072112
,
11200000
01120000
000010
001598191
000100
00720015
,
100000
010000
0093209967
0077364998
00748800
0001710697

G:=sub<GL(6,GF(113))| [79,112,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[25,34,0,0,0,0,88,88,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,112],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,15,0,0,0,112,0,98,50,0,0,0,0,1,72,0,0,0,0,91,112],[112,0,0,0,0,0,0,112,0,0,0,0,0,0,0,15,0,72,0,0,0,98,1,0,0,0,1,1,0,0,0,0,0,91,0,15],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,93,77,74,0,0,0,20,36,88,17,0,0,99,49,0,106,0,0,67,98,0,97] >;

D7×C4.10D4 in GAP, Magma, Sage, TeX

D_7\times C_4._{10}D_4
% in TeX

G:=Group("D7xC4.10D4");
// GroupNames label

G:=SmallGroup(448,284);
// by ID

G=gap.SmallGroup(448,284);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,232,219,58,570,136,438,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^7=b^2=c^4=1,d^4=c^2,e^2=d*c*d^-1=c^-1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*e=e*c,e*d*e^-1=c^-1*d^3>;
// generators/relations

׿
×
𝔽