metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: (C2×C4).4D28, (C2×C28).16D4, C4.10D4.D7, (C2×Q8).2D14, (C4×Dic7).2C4, C7⋊1(C42.3C4), (C2×Dic14).3C4, (Q8×C14).2C22, C14.14(C23⋊C4), Dic7⋊Q8.1C2, C28.10D4.1C2, C22.15(D14⋊C4), C2.15(C23.1D14), (C2×C4).4(C4×D7), (C2×C28).4(C2×C4), (C2×C4).4(C7⋊D4), (C2×C14).8(C22⋊C4), (C7×C4.10D4).1C2, SmallGroup(448,35)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for (C2×Q8).D14
G = < a,b,c,d | a2=b28=1, c4=d2=b14, ab=ba, cac-1=ab14, ad=da, cbc-1=dbd-1=ab13, dcd-1=b21c3 >
Subgroups: 300 in 60 conjugacy classes, 21 normal (all characteristic)
C1, C2, C2, C4, C22, C7, C8, C2×C4, C2×C4, Q8, C14, C14, C42, C4⋊C4, M4(2), C2×Q8, C2×Q8, Dic7, C28, C2×C14, C4.10D4, C4.10D4, C4⋊Q8, C7⋊C8, C56, Dic14, C2×Dic7, C2×C28, C7×Q8, C42.3C4, C4.Dic7, C4×Dic7, Dic7⋊C4, C7×M4(2), C2×Dic14, Q8×C14, C28.10D4, C7×C4.10D4, Dic7⋊Q8, (C2×Q8).D14
Quotients: C1, C2, C4, C22, C2×C4, D4, D7, C22⋊C4, D14, C23⋊C4, C4×D7, D28, C7⋊D4, C42.3C4, D14⋊C4, C23.1D14, (C2×Q8).D14
(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(57 71)(58 72)(59 73)(60 74)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 81)(68 82)(69 83)(70 84)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 55 107 76 15 41 93 62)(2 40 94 75 16 54 108 61)(3 53 109 74 17 39 95 60)(4 38 96 73 18 52 110 59)(5 51 111 72 19 37 97 58)(6 36 98 71 20 50 112 57)(7 49 85 70 21 35 99 84)(8 34 100 69 22 48 86 83)(9 47 87 68 23 33 101 82)(10 32 102 67 24 46 88 81)(11 45 89 66 25 31 103 80)(12 30 104 65 26 44 90 79)(13 43 91 64 27 29 105 78)(14 56 106 63 28 42 92 77)
(1 22 15 8)(2 7 16 21)(3 20 17 6)(4 5 18 19)(9 14 23 28)(10 27 24 13)(11 12 25 26)(29 60 43 74)(30 59 44 73)(31 58 45 72)(32 57 46 71)(33 84 47 70)(34 83 48 69)(35 82 49 68)(36 81 50 67)(37 80 51 66)(38 79 52 65)(39 78 53 64)(40 77 54 63)(41 76 55 62)(42 75 56 61)(85 94 99 108)(86 107 100 93)(87 92 101 106)(88 105 102 91)(89 90 103 104)(95 112 109 98)(96 97 110 111)
G:=sub<Sym(112)| (29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,55,107,76,15,41,93,62)(2,40,94,75,16,54,108,61)(3,53,109,74,17,39,95,60)(4,38,96,73,18,52,110,59)(5,51,111,72,19,37,97,58)(6,36,98,71,20,50,112,57)(7,49,85,70,21,35,99,84)(8,34,100,69,22,48,86,83)(9,47,87,68,23,33,101,82)(10,32,102,67,24,46,88,81)(11,45,89,66,25,31,103,80)(12,30,104,65,26,44,90,79)(13,43,91,64,27,29,105,78)(14,56,106,63,28,42,92,77), (1,22,15,8)(2,7,16,21)(3,20,17,6)(4,5,18,19)(9,14,23,28)(10,27,24,13)(11,12,25,26)(29,60,43,74)(30,59,44,73)(31,58,45,72)(32,57,46,71)(33,84,47,70)(34,83,48,69)(35,82,49,68)(36,81,50,67)(37,80,51,66)(38,79,52,65)(39,78,53,64)(40,77,54,63)(41,76,55,62)(42,75,56,61)(85,94,99,108)(86,107,100,93)(87,92,101,106)(88,105,102,91)(89,90,103,104)(95,112,109,98)(96,97,110,111)>;
G:=Group( (29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,55,107,76,15,41,93,62)(2,40,94,75,16,54,108,61)(3,53,109,74,17,39,95,60)(4,38,96,73,18,52,110,59)(5,51,111,72,19,37,97,58)(6,36,98,71,20,50,112,57)(7,49,85,70,21,35,99,84)(8,34,100,69,22,48,86,83)(9,47,87,68,23,33,101,82)(10,32,102,67,24,46,88,81)(11,45,89,66,25,31,103,80)(12,30,104,65,26,44,90,79)(13,43,91,64,27,29,105,78)(14,56,106,63,28,42,92,77), (1,22,15,8)(2,7,16,21)(3,20,17,6)(4,5,18,19)(9,14,23,28)(10,27,24,13)(11,12,25,26)(29,60,43,74)(30,59,44,73)(31,58,45,72)(32,57,46,71)(33,84,47,70)(34,83,48,69)(35,82,49,68)(36,81,50,67)(37,80,51,66)(38,79,52,65)(39,78,53,64)(40,77,54,63)(41,76,55,62)(42,75,56,61)(85,94,99,108)(86,107,100,93)(87,92,101,106)(88,105,102,91)(89,90,103,104)(95,112,109,98)(96,97,110,111) );
G=PermutationGroup([[(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(57,71),(58,72),(59,73),(60,74),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,81),(68,82),(69,83),(70,84)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,55,107,76,15,41,93,62),(2,40,94,75,16,54,108,61),(3,53,109,74,17,39,95,60),(4,38,96,73,18,52,110,59),(5,51,111,72,19,37,97,58),(6,36,98,71,20,50,112,57),(7,49,85,70,21,35,99,84),(8,34,100,69,22,48,86,83),(9,47,87,68,23,33,101,82),(10,32,102,67,24,46,88,81),(11,45,89,66,25,31,103,80),(12,30,104,65,26,44,90,79),(13,43,91,64,27,29,105,78),(14,56,106,63,28,42,92,77)], [(1,22,15,8),(2,7,16,21),(3,20,17,6),(4,5,18,19),(9,14,23,28),(10,27,24,13),(11,12,25,26),(29,60,43,74),(30,59,44,73),(31,58,45,72),(32,57,46,71),(33,84,47,70),(34,83,48,69),(35,82,49,68),(36,81,50,67),(37,80,51,66),(38,79,52,65),(39,78,53,64),(40,77,54,63),(41,76,55,62),(42,75,56,61),(85,94,99,108),(86,107,100,93),(87,92,101,106),(88,105,102,91),(89,90,103,104),(95,112,109,98),(96,97,110,111)]])
46 conjugacy classes
class | 1 | 2A | 2B | 4A | 4B | 4C | 4D | 4E | 4F | 7A | 7B | 7C | 8A | 8B | 8C | 8D | 14A | 14B | 14C | 14D | 14E | 14F | 28A | ··· | 28F | 28G | ··· | 28L | 56A | ··· | 56L |
order | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 7 | 7 | 7 | 8 | 8 | 8 | 8 | 14 | 14 | 14 | 14 | 14 | 14 | 28 | ··· | 28 | 28 | ··· | 28 | 56 | ··· | 56 |
size | 1 | 1 | 2 | 4 | 4 | 4 | 28 | 28 | 56 | 2 | 2 | 2 | 8 | 8 | 56 | 56 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 | 8 | ··· | 8 |
46 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | - | - | |||||
image | C1 | C2 | C2 | C2 | C4 | C4 | D4 | D7 | D14 | C4×D7 | D28 | C7⋊D4 | C23⋊C4 | C42.3C4 | C23.1D14 | (C2×Q8).D14 |
kernel | (C2×Q8).D14 | C28.10D4 | C7×C4.10D4 | Dic7⋊Q8 | C4×Dic7 | C2×Dic14 | C2×C28 | C4.10D4 | C2×Q8 | C2×C4 | C2×C4 | C2×C4 | C14 | C7 | C2 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 6 | 6 | 6 | 1 | 2 | 6 | 3 |
Matrix representation of (C2×Q8).D14 ►in GL6(𝔽113)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 112 | 0 |
0 | 0 | 0 | 0 | 0 | 112 |
1 | 89 | 0 | 0 | 0 | 0 |
24 | 103 | 0 | 0 | 0 | 0 |
0 | 0 | 10 | 99 | 0 | 0 |
0 | 0 | 96 | 103 | 0 | 0 |
0 | 0 | 0 | 0 | 10 | 99 |
0 | 0 | 0 | 0 | 96 | 103 |
17 | 8 | 0 | 0 | 0 | 0 |
77 | 96 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 89 | 79 |
0 | 0 | 0 | 0 | 7 | 24 |
0 | 0 | 112 | 0 | 0 | 0 |
0 | 0 | 0 | 112 | 0 | 0 |
112 | 0 | 0 | 0 | 0 | 0 |
89 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 10 | 99 | 0 | 0 |
0 | 0 | 96 | 103 | 0 | 0 |
0 | 0 | 0 | 0 | 89 | 79 |
0 | 0 | 0 | 0 | 7 | 24 |
G:=sub<GL(6,GF(113))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,112,0,0,0,0,0,0,112],[1,24,0,0,0,0,89,103,0,0,0,0,0,0,10,96,0,0,0,0,99,103,0,0,0,0,0,0,10,96,0,0,0,0,99,103],[17,77,0,0,0,0,8,96,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,89,7,0,0,0,0,79,24,0,0],[112,89,0,0,0,0,0,1,0,0,0,0,0,0,10,96,0,0,0,0,99,103,0,0,0,0,0,0,89,7,0,0,0,0,79,24] >;
(C2×Q8).D14 in GAP, Magma, Sage, TeX
(C_2\times Q_8).D_{14}
% in TeX
G:=Group("(C2xQ8).D14");
// GroupNames label
G:=SmallGroup(448,35);
// by ID
G=gap.SmallGroup(448,35);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,224,141,36,422,184,1123,794,297,136,851,18822]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^28=1,c^4=d^2=b^14,a*b=b*a,c*a*c^-1=a*b^14,a*d=d*a,c*b*c^-1=d*b*d^-1=a*b^13,d*c*d^-1=b^21*c^3>;
// generators/relations