Copied to
clipboard

G = (C2×Q8).D14order 448 = 26·7

2nd non-split extension by C2×Q8 of D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×C4).4D28, (C2×C28).16D4, C4.10D4.D7, (C2×Q8).2D14, (C4×Dic7).2C4, C71(C42.3C4), (C2×Dic14).3C4, (Q8×C14).2C22, C14.14(C23⋊C4), Dic7⋊Q8.1C2, C28.10D4.1C2, C22.15(D14⋊C4), C2.15(C23.1D14), (C2×C4).4(C4×D7), (C2×C28).4(C2×C4), (C2×C4).4(C7⋊D4), (C2×C14).8(C22⋊C4), (C7×C4.10D4).1C2, SmallGroup(448,35)

Series: Derived Chief Lower central Upper central

C1C2×C28 — (C2×Q8).D14
C1C7C14C2×C14C2×C28Q8×C14Dic7⋊Q8 — (C2×Q8).D14
C7C14C2×C14C2×C28 — (C2×Q8).D14
C1C2C22C2×Q8C4.10D4

Generators and relations for (C2×Q8).D14
 G = < a,b,c,d | a2=b28=1, c4=d2=b14, ab=ba, cac-1=ab14, ad=da, cbc-1=dbd-1=ab13, dcd-1=b21c3 >

Subgroups: 300 in 60 conjugacy classes, 21 normal (all characteristic)
C1, C2, C2, C4, C22, C7, C8, C2×C4, C2×C4, Q8, C14, C14, C42, C4⋊C4, M4(2), C2×Q8, C2×Q8, Dic7, C28, C2×C14, C4.10D4, C4.10D4, C4⋊Q8, C7⋊C8, C56, Dic14, C2×Dic7, C2×C28, C7×Q8, C42.3C4, C4.Dic7, C4×Dic7, Dic7⋊C4, C7×M4(2), C2×Dic14, Q8×C14, C28.10D4, C7×C4.10D4, Dic7⋊Q8, (C2×Q8).D14
Quotients: C1, C2, C4, C22, C2×C4, D4, D7, C22⋊C4, D14, C23⋊C4, C4×D7, D28, C7⋊D4, C42.3C4, D14⋊C4, C23.1D14, (C2×Q8).D14

Smallest permutation representation of (C2×Q8).D14
On 112 points
Generators in S112
(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 49)(36 50)(37 51)(38 52)(39 53)(40 54)(41 55)(42 56)(57 71)(58 72)(59 73)(60 74)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 81)(68 82)(69 83)(70 84)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 55 107 76 15 41 93 62)(2 40 94 75 16 54 108 61)(3 53 109 74 17 39 95 60)(4 38 96 73 18 52 110 59)(5 51 111 72 19 37 97 58)(6 36 98 71 20 50 112 57)(7 49 85 70 21 35 99 84)(8 34 100 69 22 48 86 83)(9 47 87 68 23 33 101 82)(10 32 102 67 24 46 88 81)(11 45 89 66 25 31 103 80)(12 30 104 65 26 44 90 79)(13 43 91 64 27 29 105 78)(14 56 106 63 28 42 92 77)
(1 22 15 8)(2 7 16 21)(3 20 17 6)(4 5 18 19)(9 14 23 28)(10 27 24 13)(11 12 25 26)(29 60 43 74)(30 59 44 73)(31 58 45 72)(32 57 46 71)(33 84 47 70)(34 83 48 69)(35 82 49 68)(36 81 50 67)(37 80 51 66)(38 79 52 65)(39 78 53 64)(40 77 54 63)(41 76 55 62)(42 75 56 61)(85 94 99 108)(86 107 100 93)(87 92 101 106)(88 105 102 91)(89 90 103 104)(95 112 109 98)(96 97 110 111)

G:=sub<Sym(112)| (29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,55,107,76,15,41,93,62)(2,40,94,75,16,54,108,61)(3,53,109,74,17,39,95,60)(4,38,96,73,18,52,110,59)(5,51,111,72,19,37,97,58)(6,36,98,71,20,50,112,57)(7,49,85,70,21,35,99,84)(8,34,100,69,22,48,86,83)(9,47,87,68,23,33,101,82)(10,32,102,67,24,46,88,81)(11,45,89,66,25,31,103,80)(12,30,104,65,26,44,90,79)(13,43,91,64,27,29,105,78)(14,56,106,63,28,42,92,77), (1,22,15,8)(2,7,16,21)(3,20,17,6)(4,5,18,19)(9,14,23,28)(10,27,24,13)(11,12,25,26)(29,60,43,74)(30,59,44,73)(31,58,45,72)(32,57,46,71)(33,84,47,70)(34,83,48,69)(35,82,49,68)(36,81,50,67)(37,80,51,66)(38,79,52,65)(39,78,53,64)(40,77,54,63)(41,76,55,62)(42,75,56,61)(85,94,99,108)(86,107,100,93)(87,92,101,106)(88,105,102,91)(89,90,103,104)(95,112,109,98)(96,97,110,111)>;

G:=Group( (29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,49)(36,50)(37,51)(38,52)(39,53)(40,54)(41,55)(42,56)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,55,107,76,15,41,93,62)(2,40,94,75,16,54,108,61)(3,53,109,74,17,39,95,60)(4,38,96,73,18,52,110,59)(5,51,111,72,19,37,97,58)(6,36,98,71,20,50,112,57)(7,49,85,70,21,35,99,84)(8,34,100,69,22,48,86,83)(9,47,87,68,23,33,101,82)(10,32,102,67,24,46,88,81)(11,45,89,66,25,31,103,80)(12,30,104,65,26,44,90,79)(13,43,91,64,27,29,105,78)(14,56,106,63,28,42,92,77), (1,22,15,8)(2,7,16,21)(3,20,17,6)(4,5,18,19)(9,14,23,28)(10,27,24,13)(11,12,25,26)(29,60,43,74)(30,59,44,73)(31,58,45,72)(32,57,46,71)(33,84,47,70)(34,83,48,69)(35,82,49,68)(36,81,50,67)(37,80,51,66)(38,79,52,65)(39,78,53,64)(40,77,54,63)(41,76,55,62)(42,75,56,61)(85,94,99,108)(86,107,100,93)(87,92,101,106)(88,105,102,91)(89,90,103,104)(95,112,109,98)(96,97,110,111) );

G=PermutationGroup([[(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,49),(36,50),(37,51),(38,52),(39,53),(40,54),(41,55),(42,56),(57,71),(58,72),(59,73),(60,74),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,81),(68,82),(69,83),(70,84)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,55,107,76,15,41,93,62),(2,40,94,75,16,54,108,61),(3,53,109,74,17,39,95,60),(4,38,96,73,18,52,110,59),(5,51,111,72,19,37,97,58),(6,36,98,71,20,50,112,57),(7,49,85,70,21,35,99,84),(8,34,100,69,22,48,86,83),(9,47,87,68,23,33,101,82),(10,32,102,67,24,46,88,81),(11,45,89,66,25,31,103,80),(12,30,104,65,26,44,90,79),(13,43,91,64,27,29,105,78),(14,56,106,63,28,42,92,77)], [(1,22,15,8),(2,7,16,21),(3,20,17,6),(4,5,18,19),(9,14,23,28),(10,27,24,13),(11,12,25,26),(29,60,43,74),(30,59,44,73),(31,58,45,72),(32,57,46,71),(33,84,47,70),(34,83,48,69),(35,82,49,68),(36,81,50,67),(37,80,51,66),(38,79,52,65),(39,78,53,64),(40,77,54,63),(41,76,55,62),(42,75,56,61),(85,94,99,108),(86,107,100,93),(87,92,101,106),(88,105,102,91),(89,90,103,104),(95,112,109,98),(96,97,110,111)]])

46 conjugacy classes

class 1 2A2B4A4B4C4D4E4F7A7B7C8A8B8C8D14A14B14C14D14E14F28A···28F28G···28L56A···56L
order122444444777888814141414141428···2828···2856···56
size1124442828562228856562224444···48···88···8

46 irreducible representations

dim1111112222224448
type+++++++++--
imageC1C2C2C2C4C4D4D7D14C4×D7D28C7⋊D4C23⋊C4C42.3C4C23.1D14(C2×Q8).D14
kernel(C2×Q8).D14C28.10D4C7×C4.10D4Dic7⋊Q8C4×Dic7C2×Dic14C2×C28C4.10D4C2×Q8C2×C4C2×C4C2×C4C14C7C2C1
# reps1111222336661263

Matrix representation of (C2×Q8).D14 in GL6(𝔽113)

100000
010000
001000
000100
00001120
00000112
,
1890000
241030000
00109900
009610300
00001099
000096103
,
1780000
77960000
00008979
0000724
00112000
00011200
,
11200000
8910000
00109900
009610300
00008979
0000724

G:=sub<GL(6,GF(113))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,112,0,0,0,0,0,0,112],[1,24,0,0,0,0,89,103,0,0,0,0,0,0,10,96,0,0,0,0,99,103,0,0,0,0,0,0,10,96,0,0,0,0,99,103],[17,77,0,0,0,0,8,96,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,89,7,0,0,0,0,79,24,0,0],[112,89,0,0,0,0,0,1,0,0,0,0,0,0,10,96,0,0,0,0,99,103,0,0,0,0,0,0,89,7,0,0,0,0,79,24] >;

(C2×Q8).D14 in GAP, Magma, Sage, TeX

(C_2\times Q_8).D_{14}
% in TeX

G:=Group("(C2xQ8).D14");
// GroupNames label

G:=SmallGroup(448,35);
// by ID

G=gap.SmallGroup(448,35);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,224,141,36,422,184,1123,794,297,136,851,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^28=1,c^4=d^2=b^14,a*b=b*a,c*a*c^-1=a*b^14,a*d=d*a,c*b*c^-1=d*b*d^-1=a*b^13,d*c*d^-1=b^21*c^3>;
// generators/relations

׿
×
𝔽