Extensions 1→N→G→Q→1 with N=C2×D28 and Q=C4

Direct product G=N×Q with N=C2×D28 and Q=C4
dρLabelID
C2×C4×D28224C2xC4xD28448,926

Semidirect products G=N:Q with N=C2×D28 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×D28)⋊1C4 = C14.C4≀C2φ: C4/C1C4 ⊆ Out C2×D28112(C2xD28):1C4448,8
(C2×D28)⋊2C4 = C22.2D56φ: C4/C1C4 ⊆ Out C2×D28112(C2xD28):2C4448,27
(C2×D28)⋊3C4 = C23.2D28φ: C4/C1C4 ⊆ Out C2×D28568+(C2xD28):3C4448,31
(C2×D28)⋊4C4 = D7×C23⋊C4φ: C4/C1C4 ⊆ Out C2×D28568+(C2xD28):4C4448,277
(C2×D28)⋊5C4 = (C2×C4)⋊9D28φ: C4/C2C2 ⊆ Out C2×D28224(C2xD28):5C4448,199
(C2×D28)⋊6C4 = C2×Dic14⋊C4φ: C4/C2C2 ⊆ Out C2×D28112(C2xD28):6C4448,461
(C2×D28)⋊7C4 = (C2×C4)⋊6D28φ: C4/C2C2 ⊆ Out C2×D28224(C2xD28):7C4448,473
(C2×D28)⋊8C4 = C2×C2.D56φ: C4/C2C2 ⊆ Out C2×D28224(C2xD28):8C4448,646
(C2×D28)⋊9C4 = C2×C14.D8φ: C4/C2C2 ⊆ Out C2×D28224(C2xD28):9C4448,499
(C2×D28)⋊10C4 = (C2×D28)⋊10C4φ: C4/C2C2 ⊆ Out C2×D28224(C2xD28):10C4448,522
(C2×D28)⋊11C4 = C4⋊C436D14φ: C4/C2C2 ⊆ Out C2×D28112(C2xD28):11C4448,535
(C2×D28)⋊12C4 = C424D14φ: C4/C2C2 ⊆ Out C2×D281124(C2xD28):12C4448,539
(C2×D28)⋊13C4 = (C2×D28)⋊13C4φ: C4/C2C2 ⊆ Out C2×D281124(C2xD28):13C4448,540
(C2×D28)⋊14C4 = C23.48D28φ: C4/C2C2 ⊆ Out C2×D28112(C2xD28):14C4448,665
(C2×D28)⋊15C4 = C2×D284C4φ: C4/C2C2 ⊆ Out C2×D28112(C2xD28):15C4448,672
(C2×D28)⋊16C4 = C23.20D28φ: C4/C2C2 ⊆ Out C2×D281124(C2xD28):16C4448,673
(C2×D28)⋊17C4 = C2×D28⋊C4φ: C4/C2C2 ⊆ Out C2×D28224(C2xD28):17C4448,956
(C2×D28)⋊18C4 = C427D14φ: C4/C2C2 ⊆ Out C2×D28112(C2xD28):18C4448,974

Non-split extensions G=N.Q with N=C2×D28 and Q=C4
extensionφ:Q→Out NdρLabelID
(C2×D28).1C4 = C42.D14φ: C4/C1C4 ⊆ Out C2×D28224(C2xD28).1C4448,21
(C2×D28).2C4 = C4.D56φ: C4/C1C4 ⊆ Out C2×D28224(C2xD28).2C4448,42
(C2×D28).3C4 = (C2×C4).D28φ: C4/C1C4 ⊆ Out C2×D281128+(C2xD28).3C4448,34
(C2×D28).4C4 = M4(2).21D14φ: C4/C1C4 ⊆ Out C2×D281128+(C2xD28).4C4448,285
(C2×D28).5C4 = C4.17D56φ: C4/C2C2 ⊆ Out C2×D28224(C2xD28).5C4448,16
(C2×D28).6C4 = C86D28φ: C4/C2C2 ⊆ Out C2×D28224(C2xD28).6C4448,222
(C2×D28).7C4 = C89D28φ: C4/C2C2 ⊆ Out C2×D28224(C2xD28).7C4448,240
(C2×D28).8C4 = D14⋊C8⋊C2φ: C4/C2C2 ⊆ Out C2×D28224(C2xD28).8C4448,261
(C2×D28).9C4 = D143M4(2)φ: C4/C2C2 ⊆ Out C2×D28224(C2xD28).9C4448,370
(C2×D28).10C4 = (C22×C8)⋊D7φ: C4/C2C2 ⊆ Out C2×D28224(C2xD28).10C4448,644
(C2×D28).11C4 = D282C8φ: C4/C2C2 ⊆ Out C2×D28224(C2xD28).11C4448,40
(C2×D28).12C4 = D28⋊C8φ: C4/C2C2 ⊆ Out C2×D28224(C2xD28).12C4448,368
(C2×D28).13C4 = C282M4(2)φ: C4/C2C2 ⊆ Out C2×D28224(C2xD28).13C4448,372
(C2×D28).14C4 = (C2×D28).14C4φ: C4/C2C2 ⊆ Out C2×D28224(C2xD28).14C4448,663
(C2×D28).15C4 = C2×C28.46D4φ: C4/C2C2 ⊆ Out C2×D28112(C2xD28).15C4448,664
(C2×D28).16C4 = C2×D28.C4φ: C4/C2C2 ⊆ Out C2×D28224(C2xD28).16C4448,1197
(C2×D28).17C4 = C28.70C24φ: C4/C2C2 ⊆ Out C2×D281124(C2xD28).17C4448,1198
(C2×D28).18C4 = C8×D28φ: trivial image224(C2xD28).18C4448,220
(C2×D28).19C4 = C2×D28.2C4φ: trivial image224(C2xD28).19C4448,1191

׿
×
𝔽