Copied to
clipboard

G = M4(2).21D14order 448 = 26·7

4th non-split extension by M4(2) of D14 acting via D14/D7=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: M4(2).21D14, (C2×D28).4C4, (C4×D7).36D4, C4.151(D4×D7), C28.96(C2×D4), C4.10D46D7, (D7×M4(2))⋊7C2, (C2×C28).8C23, (C2×Q8).95D14, C28.46D47C2, C28.10D44C2, (Q8×C14).6C22, D14.3(C22⋊C4), (C2×D28).40C22, C4.Dic7.5C22, Dic7.17(C22⋊C4), (C7×M4(2)).13C22, C72(M4(2).8C22), (C2×C4×D7).3C4, (C2×C4).7(C4×D7), (C2×C28).7(C2×C4), (C2×C4×D7).4C22, C22.17(C2×C4×D7), C2.16(D7×C22⋊C4), (C2×C4).8(C22×D7), (C7×C4.10D4)⋊6C2, C14.15(C2×C22⋊C4), (C2×Q82D7).1C2, (C22×D7).3(C2×C4), (C2×C14).11(C22×C4), (C2×Dic7).86(C2×C4), SmallGroup(448,285)

Series: Derived Chief Lower central Upper central

C1C2×C14 — M4(2).21D14
C1C7C14C28C2×C28C2×C4×D7C2×Q82D7 — M4(2).21D14
C7C14C2×C14 — M4(2).21D14
C1C2C2×C4C4.10D4

Generators and relations for M4(2).21D14
 G = < a,b,c,d | a8=b2=d2=1, c14=a4, bab=a5, cac-1=ab, dad=a5b, bc=cb, bd=db, dcd=a4c13 >

Subgroups: 812 in 150 conjugacy classes, 51 normal (21 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, D7, C14, C14, C2×C8, M4(2), M4(2), C22×C4, C2×D4, C2×Q8, C4○D4, Dic7, C28, C28, D14, D14, C2×C14, C4.D4, C4.10D4, C4.10D4, C2×M4(2), C2×C4○D4, C7⋊C8, C56, C4×D7, C4×D7, D28, C2×Dic7, C2×C28, C2×C28, C7×Q8, C22×D7, C22×D7, M4(2).8C22, C8×D7, C8⋊D7, C4.Dic7, C7×M4(2), C2×C4×D7, C2×C4×D7, C2×D28, C2×D28, Q82D7, Q8×C14, C28.46D4, C28.10D4, C7×C4.10D4, D7×M4(2), C2×Q82D7, M4(2).21D14
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22⋊C4, C22×C4, C2×D4, D14, C2×C22⋊C4, C4×D7, C22×D7, M4(2).8C22, C2×C4×D7, D4×D7, D7×C22⋊C4, M4(2).21D14

Smallest permutation representation of M4(2).21D14
On 112 points
Generators in S112
(1 100 49 68 15 86 35 82)(2 87 36 69 16 101 50 83)(3 102 51 70 17 88 37 84)(4 89 38 71 18 103 52 57)(5 104 53 72 19 90 39 58)(6 91 40 73 20 105 54 59)(7 106 55 74 21 92 41 60)(8 93 42 75 22 107 56 61)(9 108 29 76 23 94 43 62)(10 95 44 77 24 109 30 63)(11 110 31 78 25 96 45 64)(12 97 46 79 26 111 32 65)(13 112 33 80 27 98 47 66)(14 99 48 81 28 85 34 67)
(57 71)(58 72)(59 73)(60 74)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 81)(68 82)(69 83)(70 84)(85 99)(86 100)(87 101)(88 102)(89 103)(90 104)(91 105)(92 106)(93 107)(94 108)(95 109)(96 110)(97 111)(98 112)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 21)(2 20)(3 19)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)(10 12)(22 28)(23 27)(24 26)(29 47)(30 46)(31 45)(32 44)(33 43)(34 42)(35 41)(36 40)(37 39)(48 56)(49 55)(50 54)(51 53)(58 84)(59 83)(60 82)(61 81)(62 80)(63 79)(64 78)(65 77)(66 76)(67 75)(68 74)(69 73)(70 72)(85 107)(86 106)(87 105)(88 104)(89 103)(90 102)(91 101)(92 100)(93 99)(94 98)(95 97)(108 112)(109 111)

G:=sub<Sym(112)| (1,100,49,68,15,86,35,82)(2,87,36,69,16,101,50,83)(3,102,51,70,17,88,37,84)(4,89,38,71,18,103,52,57)(5,104,53,72,19,90,39,58)(6,91,40,73,20,105,54,59)(7,106,55,74,21,92,41,60)(8,93,42,75,22,107,56,61)(9,108,29,76,23,94,43,62)(10,95,44,77,24,109,30,63)(11,110,31,78,25,96,45,64)(12,97,46,79,26,111,32,65)(13,112,33,80,27,98,47,66)(14,99,48,81,28,85,34,67), (57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,21)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(22,28)(23,27)(24,26)(29,47)(30,46)(31,45)(32,44)(33,43)(34,42)(35,41)(36,40)(37,39)(48,56)(49,55)(50,54)(51,53)(58,84)(59,83)(60,82)(61,81)(62,80)(63,79)(64,78)(65,77)(66,76)(67,75)(68,74)(69,73)(70,72)(85,107)(86,106)(87,105)(88,104)(89,103)(90,102)(91,101)(92,100)(93,99)(94,98)(95,97)(108,112)(109,111)>;

G:=Group( (1,100,49,68,15,86,35,82)(2,87,36,69,16,101,50,83)(3,102,51,70,17,88,37,84)(4,89,38,71,18,103,52,57)(5,104,53,72,19,90,39,58)(6,91,40,73,20,105,54,59)(7,106,55,74,21,92,41,60)(8,93,42,75,22,107,56,61)(9,108,29,76,23,94,43,62)(10,95,44,77,24,109,30,63)(11,110,31,78,25,96,45,64)(12,97,46,79,26,111,32,65)(13,112,33,80,27,98,47,66)(14,99,48,81,28,85,34,67), (57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)(85,99)(86,100)(87,101)(88,102)(89,103)(90,104)(91,105)(92,106)(93,107)(94,108)(95,109)(96,110)(97,111)(98,112), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,21)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(22,28)(23,27)(24,26)(29,47)(30,46)(31,45)(32,44)(33,43)(34,42)(35,41)(36,40)(37,39)(48,56)(49,55)(50,54)(51,53)(58,84)(59,83)(60,82)(61,81)(62,80)(63,79)(64,78)(65,77)(66,76)(67,75)(68,74)(69,73)(70,72)(85,107)(86,106)(87,105)(88,104)(89,103)(90,102)(91,101)(92,100)(93,99)(94,98)(95,97)(108,112)(109,111) );

G=PermutationGroup([[(1,100,49,68,15,86,35,82),(2,87,36,69,16,101,50,83),(3,102,51,70,17,88,37,84),(4,89,38,71,18,103,52,57),(5,104,53,72,19,90,39,58),(6,91,40,73,20,105,54,59),(7,106,55,74,21,92,41,60),(8,93,42,75,22,107,56,61),(9,108,29,76,23,94,43,62),(10,95,44,77,24,109,30,63),(11,110,31,78,25,96,45,64),(12,97,46,79,26,111,32,65),(13,112,33,80,27,98,47,66),(14,99,48,81,28,85,34,67)], [(57,71),(58,72),(59,73),(60,74),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,81),(68,82),(69,83),(70,84),(85,99),(86,100),(87,101),(88,102),(89,103),(90,104),(91,105),(92,106),(93,107),(94,108),(95,109),(96,110),(97,111),(98,112)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,21),(2,20),(3,19),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13),(10,12),(22,28),(23,27),(24,26),(29,47),(30,46),(31,45),(32,44),(33,43),(34,42),(35,41),(36,40),(37,39),(48,56),(49,55),(50,54),(51,53),(58,84),(59,83),(60,82),(61,81),(62,80),(63,79),(64,78),(65,77),(66,76),(67,75),(68,74),(69,73),(70,72),(85,107),(86,106),(87,105),(88,104),(89,103),(90,102),(91,101),(92,100),(93,99),(94,98),(95,97),(108,112),(109,111)]])

55 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G7A7B7C8A8B8C8D8E8F8G8H14A14B14C14D14E14F28A···28F28G···28L56A···56L
order122222244444447778888888814141414141428···2828···2856···56
size11214142828224477142224444282828282224444···48···88···8

55 irreducible representations

dim1111111122222448
type++++++++++++
imageC1C2C2C2C2C2C4C4D4D7D14D14C4×D7M4(2).8C22D4×D7M4(2).21D14
kernelM4(2).21D14C28.46D4C28.10D4C7×C4.10D4D7×M4(2)C2×Q82D7C2×C4×D7C2×D28C4×D7C4.10D4M4(2)C2×Q8C2×C4C7C4C1
# reps12112144436312263

Matrix representation of M4(2).21D14 in GL8(𝔽113)

015000000
150000000
000150000
001500000
000011211583
000000150
000098000
000098001
,
1120000000
0112000000
0011200000
0001120000
00001000
00000100
0000001120
000015980112
,
2502500000
0880880000
8807900000
0250340000
000001500
000015000
000011211583
000000098
,
8808800000
0250250000
3402500000
0790880000
00001000
0000011200
00000010
00001501112

G:=sub<GL(8,GF(113))| [0,15,0,0,0,0,0,0,15,0,0,0,0,0,0,0,0,0,0,15,0,0,0,0,0,0,15,0,0,0,0,0,0,0,0,0,112,0,98,98,0,0,0,0,1,0,0,0,0,0,0,0,15,15,0,0,0,0,0,0,83,0,0,1],[112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,1,0,0,15,0,0,0,0,0,1,0,98,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112],[25,0,88,0,0,0,0,0,0,88,0,25,0,0,0,0,25,0,79,0,0,0,0,0,0,88,0,34,0,0,0,0,0,0,0,0,0,15,112,0,0,0,0,0,15,0,1,0,0,0,0,0,0,0,15,0,0,0,0,0,0,0,83,98],[88,0,34,0,0,0,0,0,0,25,0,79,0,0,0,0,88,0,25,0,0,0,0,0,0,25,0,88,0,0,0,0,0,0,0,0,1,0,0,15,0,0,0,0,0,112,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,112] >;

M4(2).21D14 in GAP, Magma, Sage, TeX

M_4(2)._{21}D_{14}
% in TeX

G:=Group("M4(2).21D14");
// GroupNames label

G:=SmallGroup(448,285);
// by ID

G=gap.SmallGroup(448,285);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,477,232,219,58,570,136,438,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=d^2=1,c^14=a^4,b*a*b=a^5,c*a*c^-1=a*b,d*a*d=a^5*b,b*c=c*b,b*d=d*b,d*c*d=a^4*c^13>;
// generators/relations

׿
×
𝔽