Copied to
clipboard

G = C2×C28.46D4order 448 = 26·7

Direct product of C2 and C28.46D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C28.46D4, M4(2)⋊22D14, (C2×C4).49D28, C4.65(C2×D28), (C2×D28).15C4, (C2×C28).172D4, C28.416(C2×D4), (C23×D7).3C4, C23.55(C4×D7), C4.28(D14⋊C4), C141(C4.D4), (C2×M4(2))⋊10D7, C28.53(C22⋊C4), (C14×M4(2))⋊18C2, (C2×C28).416C23, (C22×D28).14C2, (C22×C4).138D14, C4.Dic721C22, C22.50(D14⋊C4), (C2×D28).250C22, (C7×M4(2))⋊34C22, (C22×C28).187C22, C72(C2×C4.D4), (C2×C4).52(C4×D7), C22.20(C2×C4×D7), C2.29(C2×D14⋊C4), C4.109(C2×C7⋊D4), (C2×C28).107(C2×C4), C14.57(C2×C22⋊C4), (C2×C4.Dic7)⋊15C2, (C22×D7).5(C2×C4), (C2×C4).256(C7⋊D4), (C22×C14).70(C2×C4), (C2×C14).14(C22×C4), (C2×C4).120(C22×D7), (C2×C14).65(C22⋊C4), SmallGroup(448,664)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C2×C28.46D4
C1C7C14C28C2×C28C2×D28C22×D28 — C2×C28.46D4
C7C14C2×C14 — C2×C28.46D4
C1C22C22×C4C2×M4(2)

Generators and relations for C2×C28.46D4
 G = < a,b,c,d | a2=b28=d2=1, c4=b14, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=b7c3 >

Subgroups: 1252 in 186 conjugacy classes, 63 normal (39 characteristic)
C1, C2, C2, C2, C4, C22, C22, C7, C8, C2×C4, D4, C23, C23, D7, C14, C14, C14, C2×C8, M4(2), M4(2), C22×C4, C2×D4, C24, C28, D14, C2×C14, C2×C14, C4.D4, C2×M4(2), C2×M4(2), C22×D4, C7⋊C8, C56, D28, C2×C28, C22×D7, C22×D7, C22×C14, C2×C4.D4, C2×C7⋊C8, C4.Dic7, C4.Dic7, C2×C56, C7×M4(2), C7×M4(2), C2×D28, C2×D28, C22×C28, C23×D7, C28.46D4, C2×C4.Dic7, C14×M4(2), C22×D28, C2×C28.46D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D7, C22⋊C4, C22×C4, C2×D4, D14, C4.D4, C2×C22⋊C4, C4×D7, D28, C7⋊D4, C22×D7, C2×C4.D4, D14⋊C4, C2×C4×D7, C2×D28, C2×C7⋊D4, C28.46D4, C2×D14⋊C4, C2×C28.46D4

Smallest permutation representation of C2×C28.46D4
On 112 points
Generators in S112
(1 32)(2 33)(3 34)(4 35)(5 36)(6 37)(7 38)(8 39)(9 40)(10 41)(11 42)(12 43)(13 44)(14 45)(15 46)(16 47)(17 48)(18 49)(19 50)(20 51)(21 52)(22 53)(23 54)(24 55)(25 56)(26 29)(27 30)(28 31)(57 110)(58 111)(59 112)(60 85)(61 86)(62 87)(63 88)(64 89)(65 90)(66 91)(67 92)(68 93)(69 94)(70 95)(71 96)(72 97)(73 98)(74 99)(75 100)(76 101)(77 102)(78 103)(79 104)(80 105)(81 106)(82 107)(83 108)(84 109)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 108 39 76 15 94 53 62)(2 107 40 75 16 93 54 61)(3 106 41 74 17 92 55 60)(4 105 42 73 18 91 56 59)(5 104 43 72 19 90 29 58)(6 103 44 71 20 89 30 57)(7 102 45 70 21 88 31 84)(8 101 46 69 22 87 32 83)(9 100 47 68 23 86 33 82)(10 99 48 67 24 85 34 81)(11 98 49 66 25 112 35 80)(12 97 50 65 26 111 36 79)(13 96 51 64 27 110 37 78)(14 95 52 63 28 109 38 77)
(1 32)(2 31)(3 30)(4 29)(5 56)(6 55)(7 54)(8 53)(9 52)(10 51)(11 50)(12 49)(13 48)(14 47)(15 46)(16 45)(17 44)(18 43)(19 42)(20 41)(21 40)(22 39)(23 38)(24 37)(25 36)(26 35)(27 34)(28 33)(57 67)(58 66)(59 65)(60 64)(61 63)(68 84)(69 83)(70 82)(71 81)(72 80)(73 79)(74 78)(75 77)(85 89)(86 88)(90 112)(91 111)(92 110)(93 109)(94 108)(95 107)(96 106)(97 105)(98 104)(99 103)(100 102)

G:=sub<Sym(112)| (1,32)(2,33)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(17,48)(18,49)(19,50)(20,51)(21,52)(22,53)(23,54)(24,55)(25,56)(26,29)(27,30)(28,31)(57,110)(58,111)(59,112)(60,85)(61,86)(62,87)(63,88)(64,89)(65,90)(66,91)(67,92)(68,93)(69,94)(70,95)(71,96)(72,97)(73,98)(74,99)(75,100)(76,101)(77,102)(78,103)(79,104)(80,105)(81,106)(82,107)(83,108)(84,109), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,108,39,76,15,94,53,62)(2,107,40,75,16,93,54,61)(3,106,41,74,17,92,55,60)(4,105,42,73,18,91,56,59)(5,104,43,72,19,90,29,58)(6,103,44,71,20,89,30,57)(7,102,45,70,21,88,31,84)(8,101,46,69,22,87,32,83)(9,100,47,68,23,86,33,82)(10,99,48,67,24,85,34,81)(11,98,49,66,25,112,35,80)(12,97,50,65,26,111,36,79)(13,96,51,64,27,110,37,78)(14,95,52,63,28,109,38,77), (1,32)(2,31)(3,30)(4,29)(5,56)(6,55)(7,54)(8,53)(9,52)(10,51)(11,50)(12,49)(13,48)(14,47)(15,46)(16,45)(17,44)(18,43)(19,42)(20,41)(21,40)(22,39)(23,38)(24,37)(25,36)(26,35)(27,34)(28,33)(57,67)(58,66)(59,65)(60,64)(61,63)(68,84)(69,83)(70,82)(71,81)(72,80)(73,79)(74,78)(75,77)(85,89)(86,88)(90,112)(91,111)(92,110)(93,109)(94,108)(95,107)(96,106)(97,105)(98,104)(99,103)(100,102)>;

G:=Group( (1,32)(2,33)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(17,48)(18,49)(19,50)(20,51)(21,52)(22,53)(23,54)(24,55)(25,56)(26,29)(27,30)(28,31)(57,110)(58,111)(59,112)(60,85)(61,86)(62,87)(63,88)(64,89)(65,90)(66,91)(67,92)(68,93)(69,94)(70,95)(71,96)(72,97)(73,98)(74,99)(75,100)(76,101)(77,102)(78,103)(79,104)(80,105)(81,106)(82,107)(83,108)(84,109), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,108,39,76,15,94,53,62)(2,107,40,75,16,93,54,61)(3,106,41,74,17,92,55,60)(4,105,42,73,18,91,56,59)(5,104,43,72,19,90,29,58)(6,103,44,71,20,89,30,57)(7,102,45,70,21,88,31,84)(8,101,46,69,22,87,32,83)(9,100,47,68,23,86,33,82)(10,99,48,67,24,85,34,81)(11,98,49,66,25,112,35,80)(12,97,50,65,26,111,36,79)(13,96,51,64,27,110,37,78)(14,95,52,63,28,109,38,77), (1,32)(2,31)(3,30)(4,29)(5,56)(6,55)(7,54)(8,53)(9,52)(10,51)(11,50)(12,49)(13,48)(14,47)(15,46)(16,45)(17,44)(18,43)(19,42)(20,41)(21,40)(22,39)(23,38)(24,37)(25,36)(26,35)(27,34)(28,33)(57,67)(58,66)(59,65)(60,64)(61,63)(68,84)(69,83)(70,82)(71,81)(72,80)(73,79)(74,78)(75,77)(85,89)(86,88)(90,112)(91,111)(92,110)(93,109)(94,108)(95,107)(96,106)(97,105)(98,104)(99,103)(100,102) );

G=PermutationGroup([[(1,32),(2,33),(3,34),(4,35),(5,36),(6,37),(7,38),(8,39),(9,40),(10,41),(11,42),(12,43),(13,44),(14,45),(15,46),(16,47),(17,48),(18,49),(19,50),(20,51),(21,52),(22,53),(23,54),(24,55),(25,56),(26,29),(27,30),(28,31),(57,110),(58,111),(59,112),(60,85),(61,86),(62,87),(63,88),(64,89),(65,90),(66,91),(67,92),(68,93),(69,94),(70,95),(71,96),(72,97),(73,98),(74,99),(75,100),(76,101),(77,102),(78,103),(79,104),(80,105),(81,106),(82,107),(83,108),(84,109)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,108,39,76,15,94,53,62),(2,107,40,75,16,93,54,61),(3,106,41,74,17,92,55,60),(4,105,42,73,18,91,56,59),(5,104,43,72,19,90,29,58),(6,103,44,71,20,89,30,57),(7,102,45,70,21,88,31,84),(8,101,46,69,22,87,32,83),(9,100,47,68,23,86,33,82),(10,99,48,67,24,85,34,81),(11,98,49,66,25,112,35,80),(12,97,50,65,26,111,36,79),(13,96,51,64,27,110,37,78),(14,95,52,63,28,109,38,77)], [(1,32),(2,31),(3,30),(4,29),(5,56),(6,55),(7,54),(8,53),(9,52),(10,51),(11,50),(12,49),(13,48),(14,47),(15,46),(16,45),(17,44),(18,43),(19,42),(20,41),(21,40),(22,39),(23,38),(24,37),(25,36),(26,35),(27,34),(28,33),(57,67),(58,66),(59,65),(60,64),(61,63),(68,84),(69,83),(70,82),(71,81),(72,80),(73,79),(74,78),(75,77),(85,89),(86,88),(90,112),(91,111),(92,110),(93,109),(94,108),(95,107),(96,106),(97,105),(98,104),(99,103),(100,102)]])

82 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D7A7B7C8A8B8C8D8E8F8G8H14A···14I14J···14O28A···28L28M···28R56A···56X
order122222222244447778888888814···1414···1428···2828···2856···56
size1111222828282822222224444282828282···24···42···24···44···4

82 irreducible representations

dim11111112222222244
type++++++++++++
imageC1C2C2C2C2C4C4D4D7D14D14C4×D7D28C7⋊D4C4×D7C4.D4C28.46D4
kernelC2×C28.46D4C28.46D4C2×C4.Dic7C14×M4(2)C22×D28C2×D28C23×D7C2×C28C2×M4(2)M4(2)C22×C4C2×C4C2×C4C2×C4C23C14C2
# reps14111444363612126212

Matrix representation of C2×C28.46D4 in GL6(𝔽113)

11200000
01120000
001000
000100
000010
000001
,
24100000
7900000
00963600
00772300
0059462336
0046287796
,
0100000
3400000
004427289
009760899
001110120105
00774116102
,
0100000
3400000
001038900
001031000
003410510
00981924112

G:=sub<GL(6,GF(113))| [112,0,0,0,0,0,0,112,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[24,79,0,0,0,0,10,0,0,0,0,0,0,0,96,77,59,46,0,0,36,23,46,28,0,0,0,0,23,77,0,0,0,0,36,96],[0,34,0,0,0,0,10,0,0,0,0,0,0,0,44,97,11,77,0,0,27,60,101,41,0,0,2,89,20,16,0,0,89,9,105,102],[0,34,0,0,0,0,10,0,0,0,0,0,0,0,103,103,34,98,0,0,89,10,105,19,0,0,0,0,1,24,0,0,0,0,0,112] >;

C2×C28.46D4 in GAP, Magma, Sage, TeX

C_2\times C_{28}._{46}D_4
% in TeX

G:=Group("C2xC28.46D4");
// GroupNames label

G:=SmallGroup(448,664);
// by ID

G=gap.SmallGroup(448,664);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,422,58,1123,136,438,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^28=d^2=1,c^4=b^14,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=b^7*c^3>;
// generators/relations

׿
×
𝔽