# Extensions 1→N→G→Q→1 with N=Q8×C14 and Q=C4

Direct product G=N×Q with N=Q8×C14 and Q=C4
dρLabelID
Q8×C2×C28448Q8xC2xC28448,1299

Semidirect products G=N:Q with N=Q8×C14 and Q=C4
extensionφ:Q→Out NdρLabelID
(Q8×C14)⋊1C4 = C4⋊C4⋊Dic7φ: C4/C1C4 ⊆ Out Q8×C14112(Q8xC14):1C4448,95
(Q8×C14)⋊2C4 = C422Dic7φ: C4/C1C4 ⊆ Out Q8×C141124(Q8xC14):2C4448,98
(Q8×C14)⋊3C4 = C7×C23.31D4φ: C4/C1C4 ⊆ Out Q8×C14112(Q8xC14):3C4448,132
(Q8×C14)⋊4C4 = C7×C423C4φ: C4/C1C4 ⊆ Out Q8×C141124(Q8xC14):4C4448,158
(Q8×C14)⋊5C4 = C2×Q8⋊Dic7φ: C4/C2C2 ⊆ Out Q8×C14448(Q8xC14):5C4448,758
(Q8×C14)⋊6C4 = (Q8×C14)⋊6C4φ: C4/C2C2 ⊆ Out Q8×C14224(Q8xC14):6C4448,759
(Q8×C14)⋊7C4 = (Q8×C14)⋊7C4φ: C4/C2C2 ⊆ Out Q8×C14448(Q8xC14):7C4448,764
(Q8×C14)⋊8C4 = C2×D42Dic7φ: C4/C2C2 ⊆ Out Q8×C14112(Q8xC14):8C4448,769
(Q8×C14)⋊9C4 = (D4×C14)⋊9C4φ: C4/C2C2 ⊆ Out Q8×C141124(Q8xC14):9C4448,770
(Q8×C14)⋊10C4 = (D4×C14)⋊10C4φ: C4/C2C2 ⊆ Out Q8×C141124(Q8xC14):10C4448,774
(Q8×C14)⋊11C4 = C2×Q8×Dic7φ: C4/C2C2 ⊆ Out Q8×C14448(Q8xC14):11C4448,1264
(Q8×C14)⋊12C4 = C14.422- 1+4φ: C4/C2C2 ⊆ Out Q8×C14224(Q8xC14):12C4448,1265
(Q8×C14)⋊13C4 = C7×C23.67C23φ: C4/C2C2 ⊆ Out Q8×C14448(Q8xC14):13C4448,799
(Q8×C14)⋊14C4 = C7×C23.C23φ: C4/C2C2 ⊆ Out Q8×C141124(Q8xC14):14C4448,818
(Q8×C14)⋊15C4 = C14×Q8⋊C4φ: C4/C2C2 ⊆ Out Q8×C14448(Q8xC14):15C4448,823
(Q8×C14)⋊16C4 = C7×C23.38D4φ: C4/C2C2 ⊆ Out Q8×C14224(Q8xC14):16C4448,827
(Q8×C14)⋊17C4 = C14×C4≀C2φ: C4/C2C2 ⊆ Out Q8×C14112(Q8xC14):17C4448,828
(Q8×C14)⋊18C4 = C7×C42⋊C22φ: C4/C2C2 ⊆ Out Q8×C141124(Q8xC14):18C4448,829
(Q8×C14)⋊19C4 = C7×C23.32C23φ: C4/C2C2 ⊆ Out Q8×C14224(Q8xC14):19C4448,1302

Non-split extensions G=N.Q with N=Q8×C14 and Q=C4
extensionφ:Q→Out NdρLabelID
(Q8×C14).1C4 = C42.7D14φ: C4/C1C4 ⊆ Out Q8×C14224(Q8xC14).1C4448,97
(Q8×C14).2C4 = C28.5Q16φ: C4/C1C4 ⊆ Out Q8×C14448(Q8xC14).2C4448,103
(Q8×C14).3C4 = C42.3Dic7φ: C4/C1C4 ⊆ Out Q8×C141124(Q8xC14).3C4448,105
(Q8×C14).4C4 = C7×C42.C22φ: C4/C1C4 ⊆ Out Q8×C14224(Q8xC14).4C4448,133
(Q8×C14).5C4 = C7×C4.6Q16φ: C4/C1C4 ⊆ Out Q8×C14448(Q8xC14).5C4448,137
(Q8×C14).6C4 = C7×C42.3C4φ: C4/C1C4 ⊆ Out Q8×C141124(Q8xC14).6C4448,160
(Q8×C14).7C4 = C28.26Q16φ: C4/C2C2 ⊆ Out Q8×C14448(Q8xC14).7C4448,92
(Q8×C14).8C4 = Q8×C7⋊C8φ: C4/C2C2 ⊆ Out Q8×C14448(Q8xC14).8C4448,557
(Q8×C14).9C4 = C42.210D14φ: C4/C2C2 ⊆ Out Q8×C14448(Q8xC14).9C4448,558
(Q8×C14).10C4 = C2×C28.10D4φ: C4/C2C2 ⊆ Out Q8×C14224(Q8xC14).10C4448,760
(Q8×C14).11C4 = (D4×C14).11C4φ: C4/C2C2 ⊆ Out Q8×C14224(Q8xC14).11C4448,768
(Q8×C14).12C4 = C2×Q8.Dic7φ: C4/C2C2 ⊆ Out Q8×C14224(Q8xC14).12C4448,1271
(Q8×C14).13C4 = C28.76C24φ: C4/C2C2 ⊆ Out Q8×C141124(Q8xC14).13C4448,1272
(Q8×C14).14C4 = C7×Q8⋊C8φ: C4/C2C2 ⊆ Out Q8×C14448(Q8xC14).14C4448,130
(Q8×C14).15C4 = C7×(C22×C8)⋊C2φ: C4/C2C2 ⊆ Out Q8×C14224(Q8xC14).15C4448,816
(Q8×C14).16C4 = C14×C4.10D4φ: C4/C2C2 ⊆ Out Q8×C14224(Q8xC14).16C4448,820
(Q8×C14).17C4 = C7×C84Q8φ: C4/C2C2 ⊆ Out Q8×C14448(Q8xC14).17C4448,854
(Q8×C14).18C4 = C7×Q8○M4(2)φ: C4/C2C2 ⊆ Out Q8×C141124(Q8xC14).18C4448,1351
(Q8×C14).19C4 = Q8×C56φ: trivial image448(Q8xC14).19C4448,853
(Q8×C14).20C4 = C14×C8○D4φ: trivial image224(Q8xC14).20C4448,1350

׿
×
𝔽