Copied to
clipboard

G = C4⋊C4⋊Dic7order 448 = 26·7

2nd semidirect product of C4⋊C4 and Dic7 acting via Dic7/C7=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4⋊C42Dic7, (Q8×C14)⋊1C4, C14.17C4≀C2, (C2×Q8)⋊1Dic7, (C2×C14).3Q16, C22⋊Q8.1D7, (C2×C28).230D4, (C2×C14).11SD16, (C22×C14).45D4, (C22×C4).60D14, C22.5(Q8⋊D7), C14.21(C23⋊C4), C2.3(Q8⋊Dic7), C73(C23.31D4), C23.49(C7⋊D4), C2.6(C23⋊Dic7), C22.2(C7⋊Q16), C14.11(Q8⋊C4), C2.5(D42Dic7), C28.55D4.16C2, C14.C42.35C2, (C22×C28).372C22, C22.38(C23.D7), (C7×C4⋊C4)⋊2C4, (C2×C4).8(C2×Dic7), (C2×C28).168(C2×C4), (C7×C22⋊Q8).10C2, (C2×C4).164(C7⋊D4), (C2×C14).96(C22⋊C4), SmallGroup(448,95)

Series: Derived Chief Lower central Upper central

C1C2×C28 — C4⋊C4⋊Dic7
C1C7C14C2×C14C22×C14C22×C28C14.C42 — C4⋊C4⋊Dic7
C7C2×C14C2×C28 — C4⋊C4⋊Dic7
C1C22C22×C4C22⋊Q8

Generators and relations for C4⋊C4⋊Dic7
 G = < a,b,c,d | a4=b4=c14=1, d2=c7, bab-1=a-1, ac=ca, dad-1=ab2, cbc-1=a2b-1, dbd-1=ab, dcd-1=c-1 >

Subgroups: 348 in 80 conjugacy classes, 31 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C7, C8, C2×C4, C2×C4, Q8, C23, C14, C14, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×Q8, Dic7, C28, C2×C14, C2×C14, C2.C42, C22⋊C8, C22⋊Q8, C7⋊C8, C2×Dic7, C2×C28, C2×C28, C7×Q8, C22×C14, C23.31D4, C2×C7⋊C8, C7×C22⋊C4, C7×C4⋊C4, C7×C4⋊C4, C22×Dic7, C22×C28, Q8×C14, C28.55D4, C14.C42, C7×C22⋊Q8, C4⋊C4⋊Dic7
Quotients: C1, C2, C4, C22, C2×C4, D4, D7, C22⋊C4, SD16, Q16, Dic7, D14, C23⋊C4, Q8⋊C4, C4≀C2, C2×Dic7, C7⋊D4, C23.31D4, Q8⋊D7, C7⋊Q16, C23.D7, C23⋊Dic7, Q8⋊Dic7, D42Dic7, C4⋊C4⋊Dic7

Smallest permutation representation of C4⋊C4⋊Dic7
On 112 points
Generators in S112
(1 49 13 53)(2 43 14 54)(3 44 8 55)(4 45 9 56)(5 46 10 50)(6 47 11 51)(7 48 12 52)(15 29 22 36)(16 30 23 37)(17 31 24 38)(18 32 25 39)(19 33 26 40)(20 34 27 41)(21 35 28 42)(57 87 100 82)(58 88 101 83)(59 89 102 84)(60 90 103 71)(61 91 104 72)(62 92 105 73)(63 93 106 74)(64 94 107 75)(65 95 108 76)(66 96 109 77)(67 97 110 78)(68 98 111 79)(69 85 112 80)(70 86 99 81)
(1 87 27 75)(2 95 28 83)(3 89 22 77)(4 97 23 71)(5 91 24 79)(6 85 25 73)(7 93 26 81)(8 84 15 96)(9 78 16 90)(10 72 17 98)(11 80 18 92)(12 74 19 86)(13 82 20 94)(14 76 21 88)(29 66 55 102)(30 60 56 110)(31 68 50 104)(32 62 51 112)(33 70 52 106)(34 64 53 100)(35 58 54 108)(36 109 44 59)(37 103 45 67)(38 111 46 61)(39 105 47 69)(40 99 48 63)(41 107 49 57)(42 101 43 65)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 13)(2 12)(3 11)(4 10)(5 9)(6 8)(7 14)(15 25)(16 24)(17 23)(18 22)(19 28)(20 27)(21 26)(29 47)(30 46)(31 45)(32 44)(33 43)(34 49)(35 48)(36 51)(37 50)(38 56)(39 55)(40 54)(41 53)(42 52)(57 82 64 75)(58 81 65 74)(59 80 66 73)(60 79 67 72)(61 78 68 71)(62 77 69 84)(63 76 70 83)(85 109 92 102)(86 108 93 101)(87 107 94 100)(88 106 95 99)(89 105 96 112)(90 104 97 111)(91 103 98 110)

G:=sub<Sym(112)| (1,49,13,53)(2,43,14,54)(3,44,8,55)(4,45,9,56)(5,46,10,50)(6,47,11,51)(7,48,12,52)(15,29,22,36)(16,30,23,37)(17,31,24,38)(18,32,25,39)(19,33,26,40)(20,34,27,41)(21,35,28,42)(57,87,100,82)(58,88,101,83)(59,89,102,84)(60,90,103,71)(61,91,104,72)(62,92,105,73)(63,93,106,74)(64,94,107,75)(65,95,108,76)(66,96,109,77)(67,97,110,78)(68,98,111,79)(69,85,112,80)(70,86,99,81), (1,87,27,75)(2,95,28,83)(3,89,22,77)(4,97,23,71)(5,91,24,79)(6,85,25,73)(7,93,26,81)(8,84,15,96)(9,78,16,90)(10,72,17,98)(11,80,18,92)(12,74,19,86)(13,82,20,94)(14,76,21,88)(29,66,55,102)(30,60,56,110)(31,68,50,104)(32,62,51,112)(33,70,52,106)(34,64,53,100)(35,58,54,108)(36,109,44,59)(37,103,45,67)(38,111,46,61)(39,105,47,69)(40,99,48,63)(41,107,49,57)(42,101,43,65), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(7,14)(15,25)(16,24)(17,23)(18,22)(19,28)(20,27)(21,26)(29,47)(30,46)(31,45)(32,44)(33,43)(34,49)(35,48)(36,51)(37,50)(38,56)(39,55)(40,54)(41,53)(42,52)(57,82,64,75)(58,81,65,74)(59,80,66,73)(60,79,67,72)(61,78,68,71)(62,77,69,84)(63,76,70,83)(85,109,92,102)(86,108,93,101)(87,107,94,100)(88,106,95,99)(89,105,96,112)(90,104,97,111)(91,103,98,110)>;

G:=Group( (1,49,13,53)(2,43,14,54)(3,44,8,55)(4,45,9,56)(5,46,10,50)(6,47,11,51)(7,48,12,52)(15,29,22,36)(16,30,23,37)(17,31,24,38)(18,32,25,39)(19,33,26,40)(20,34,27,41)(21,35,28,42)(57,87,100,82)(58,88,101,83)(59,89,102,84)(60,90,103,71)(61,91,104,72)(62,92,105,73)(63,93,106,74)(64,94,107,75)(65,95,108,76)(66,96,109,77)(67,97,110,78)(68,98,111,79)(69,85,112,80)(70,86,99,81), (1,87,27,75)(2,95,28,83)(3,89,22,77)(4,97,23,71)(5,91,24,79)(6,85,25,73)(7,93,26,81)(8,84,15,96)(9,78,16,90)(10,72,17,98)(11,80,18,92)(12,74,19,86)(13,82,20,94)(14,76,21,88)(29,66,55,102)(30,60,56,110)(31,68,50,104)(32,62,51,112)(33,70,52,106)(34,64,53,100)(35,58,54,108)(36,109,44,59)(37,103,45,67)(38,111,46,61)(39,105,47,69)(40,99,48,63)(41,107,49,57)(42,101,43,65), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(7,14)(15,25)(16,24)(17,23)(18,22)(19,28)(20,27)(21,26)(29,47)(30,46)(31,45)(32,44)(33,43)(34,49)(35,48)(36,51)(37,50)(38,56)(39,55)(40,54)(41,53)(42,52)(57,82,64,75)(58,81,65,74)(59,80,66,73)(60,79,67,72)(61,78,68,71)(62,77,69,84)(63,76,70,83)(85,109,92,102)(86,108,93,101)(87,107,94,100)(88,106,95,99)(89,105,96,112)(90,104,97,111)(91,103,98,110) );

G=PermutationGroup([[(1,49,13,53),(2,43,14,54),(3,44,8,55),(4,45,9,56),(5,46,10,50),(6,47,11,51),(7,48,12,52),(15,29,22,36),(16,30,23,37),(17,31,24,38),(18,32,25,39),(19,33,26,40),(20,34,27,41),(21,35,28,42),(57,87,100,82),(58,88,101,83),(59,89,102,84),(60,90,103,71),(61,91,104,72),(62,92,105,73),(63,93,106,74),(64,94,107,75),(65,95,108,76),(66,96,109,77),(67,97,110,78),(68,98,111,79),(69,85,112,80),(70,86,99,81)], [(1,87,27,75),(2,95,28,83),(3,89,22,77),(4,97,23,71),(5,91,24,79),(6,85,25,73),(7,93,26,81),(8,84,15,96),(9,78,16,90),(10,72,17,98),(11,80,18,92),(12,74,19,86),(13,82,20,94),(14,76,21,88),(29,66,55,102),(30,60,56,110),(31,68,50,104),(32,62,51,112),(33,70,52,106),(34,64,53,100),(35,58,54,108),(36,109,44,59),(37,103,45,67),(38,111,46,61),(39,105,47,69),(40,99,48,63),(41,107,49,57),(42,101,43,65)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,13),(2,12),(3,11),(4,10),(5,9),(6,8),(7,14),(15,25),(16,24),(17,23),(18,22),(19,28),(20,27),(21,26),(29,47),(30,46),(31,45),(32,44),(33,43),(34,49),(35,48),(36,51),(37,50),(38,56),(39,55),(40,54),(41,53),(42,52),(57,82,64,75),(58,81,65,74),(59,80,66,73),(60,79,67,72),(61,78,68,71),(62,77,69,84),(63,76,70,83),(85,109,92,102),(86,108,93,101),(87,107,94,100),(88,106,95,99),(89,105,96,112),(90,104,97,111),(91,103,98,110)]])

61 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H4I7A7B7C8A8B8C8D14A···14I14J···14O28A···28L28M···28X
order122222444444444777888814···1414···1428···2828···28
size1111222248828282828222282828282···24···44···48···8

61 irreducible representations

dim1111112222222222244444
type+++++++--+-++-
imageC1C2C2C2C4C4D4D4D7SD16Q16Dic7D14Dic7C4≀C2C7⋊D4C7⋊D4C23⋊C4Q8⋊D7C7⋊Q16C23⋊Dic7D42Dic7
kernelC4⋊C4⋊Dic7C28.55D4C14.C42C7×C22⋊Q8C7×C4⋊C4Q8×C14C2×C28C22×C14C22⋊Q8C2×C14C2×C14C4⋊C4C22×C4C2×Q8C14C2×C4C23C14C22C22C2C2
# reps1111221132233346613366

Matrix representation of C4⋊C4⋊Dic7 in GL6(𝔽113)

9800000
0150000
00112000
00011200
000015111
0000098
,
010000
100000
00295800
0058400
00006987
00001844
,
100000
01120000
0010310200
001100
000010
000001
,
11200000
0980000
00371600
00987600
00001120
0000981

G:=sub<GL(6,GF(113))| [98,0,0,0,0,0,0,15,0,0,0,0,0,0,112,0,0,0,0,0,0,112,0,0,0,0,0,0,15,0,0,0,0,0,111,98],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,29,5,0,0,0,0,58,84,0,0,0,0,0,0,69,18,0,0,0,0,87,44],[1,0,0,0,0,0,0,112,0,0,0,0,0,0,103,1,0,0,0,0,102,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[112,0,0,0,0,0,0,98,0,0,0,0,0,0,37,98,0,0,0,0,16,76,0,0,0,0,0,0,112,98,0,0,0,0,0,1] >;

C4⋊C4⋊Dic7 in GAP, Magma, Sage, TeX

C_4\rtimes C_4\rtimes {\rm Dic}_7
% in TeX

G:=Group("C4:C4:Dic7");
// GroupNames label

G:=SmallGroup(448,95);
// by ID

G=gap.SmallGroup(448,95);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,28,141,232,219,1571,570,136,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=1,d^2=c^7,b*a*b^-1=a^-1,a*c=c*a,d*a*d^-1=a*b^2,c*b*c^-1=a^2*b^-1,d*b*d^-1=a*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽