extension | φ:Q→Out N | d | ρ | Label | ID |
(C7×D4⋊C4)⋊1C2 = C7×C8⋊8D4 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):1C2 | 448,873 |
(C7×D4⋊C4)⋊2C2 = C7×C8⋊7D4 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):2C2 | 448,874 |
(C7×D4⋊C4)⋊3C2 = C7×C4.4D8 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):3C2 | 448,894 |
(C7×D4⋊C4)⋊4C2 = D4⋊D28 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 112 | | (C7xD4:C4):4C2 | 448,307 |
(C7×D4⋊C4)⋊5C2 = D14.D8 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):5C2 | 448,308 |
(C7×D4⋊C4)⋊6C2 = D4.D28 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):6C2 | 448,317 |
(C7×D4⋊C4)⋊7C2 = C56⋊1C4⋊C2 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):7C2 | 448,318 |
(C7×D4⋊C4)⋊8C2 = D28⋊3D4 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):8C2 | 448,320 |
(C7×D4⋊C4)⋊9C2 = Dic14⋊2D4 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):9C2 | 448,296 |
(C7×D4⋊C4)⋊10C2 = D4.6D28 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 112 | | (C7xD4:C4):10C2 | 448,310 |
(C7×D4⋊C4)⋊11C2 = D14.SD16 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):11C2 | 448,311 |
(C7×D4⋊C4)⋊12C2 = C8⋊Dic7⋊C2 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):12C2 | 448,313 |
(C7×D4⋊C4)⋊13C2 = D4⋊3D28 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):13C2 | 448,315 |
(C7×D4⋊C4)⋊14C2 = D28.D4 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):14C2 | 448,321 |
(C7×D4⋊C4)⋊15C2 = Dic7⋊4D8 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):15C2 | 448,290 |
(C7×D4⋊C4)⋊16C2 = Dic7.SD16 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):16C2 | 448,294 |
(C7×D4⋊C4)⋊17C2 = C4⋊C4.D14 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):17C2 | 448,298 |
(C7×D4⋊C4)⋊18C2 = D7×D4⋊C4 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 112 | | (C7xD4:C4):18C2 | 448,303 |
(C7×D4⋊C4)⋊19C2 = (D4×D7)⋊C4 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 112 | | (C7xD4:C4):19C2 | 448,304 |
(C7×D4⋊C4)⋊20C2 = D4⋊(C4×D7) | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):20C2 | 448,305 |
(C7×D4⋊C4)⋊21C2 = D4⋊2D7⋊C4 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):21C2 | 448,306 |
(C7×D4⋊C4)⋊22C2 = D14⋊D8 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):22C2 | 448,309 |
(C7×D4⋊C4)⋊23C2 = D14⋊SD16 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):23C2 | 448,312 |
(C7×D4⋊C4)⋊24C2 = C7⋊C8⋊1D4 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):24C2 | 448,314 |
(C7×D4⋊C4)⋊25C2 = C7⋊C8⋊D4 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):25C2 | 448,316 |
(C7×D4⋊C4)⋊26C2 = D4⋊D7⋊C4 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):26C2 | 448,319 |
(C7×D4⋊C4)⋊27C2 = C7×C22⋊D8 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 112 | | (C7xD4:C4):27C2 | 448,855 |
(C7×D4⋊C4)⋊28C2 = C7×D4.7D4 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):28C2 | 448,860 |
(C7×D4⋊C4)⋊29C2 = C7×C4⋊D8 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):29C2 | 448,867 |
(C7×D4⋊C4)⋊30C2 = C7×C22.D8 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):30C2 | 448,888 |
(C7×D4⋊C4)⋊31C2 = C7×C23.19D4 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):31C2 | 448,890 |
(C7×D4⋊C4)⋊32C2 = C7×D4⋊D4 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):32C2 | 448,857 |
(C7×D4⋊C4)⋊33C2 = C7×C22⋊SD16 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 112 | | (C7xD4:C4):33C2 | 448,858 |
(C7×D4⋊C4)⋊34C2 = C7×C4⋊SD16 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):34C2 | 448,868 |
(C7×D4⋊C4)⋊35C2 = C7×D4.2D4 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):35C2 | 448,871 |
(C7×D4⋊C4)⋊36C2 = C7×C23.46D4 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):36C2 | 448,889 |
(C7×D4⋊C4)⋊37C2 = C7×C23.36D4 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):37C2 | 448,825 |
(C7×D4⋊C4)⋊38C2 = C7×C23.37D4 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 112 | | (C7xD4:C4):38C2 | 448,826 |
(C7×D4⋊C4)⋊39C2 = C7×D8⋊C4 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):39C2 | 448,850 |
(C7×D4⋊C4)⋊40C2 = C7×C8⋊D4 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):40C2 | 448,876 |
(C7×D4⋊C4)⋊41C2 = C7×C8⋊2D4 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):41C2 | 448,877 |
(C7×D4⋊C4)⋊42C2 = C7×C42.29C22 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4):42C2 | 448,898 |
(C7×D4⋊C4)⋊43C2 = C7×C23.24D4 | φ: trivial image | 224 | | (C7xD4:C4):43C2 | 448,824 |
(C7×D4⋊C4)⋊44C2 = D8×C28 | φ: trivial image | 224 | | (C7xD4:C4):44C2 | 448,845 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C7×D4⋊C4).1C2 = C7×C42.78C22 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4).1C2 | 448,896 |
(C7×D4⋊C4).2C2 = Dic7.D8 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4).2C2 | 448,293 |
(C7×D4⋊C4).3C2 = D4.2Dic14 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4).3C2 | 448,300 |
(C7×D4⋊C4).4C2 = Dic14.D4 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4).4C2 | 448,301 |
(C7×D4⋊C4).5C2 = D4⋊Dic14 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4).5C2 | 448,295 |
(C7×D4⋊C4).6C2 = D4.Dic14 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4).6C2 | 448,297 |
(C7×D4⋊C4).7C2 = D4.D7⋊C4 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4).7C2 | 448,291 |
(C7×D4⋊C4).8C2 = Dic7⋊6SD16 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4).8C2 | 448,292 |
(C7×D4⋊C4).9C2 = C28⋊Q8⋊C2 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4).9C2 | 448,299 |
(C7×D4⋊C4).10C2 = (C8×Dic7)⋊C2 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4).10C2 | 448,302 |
(C7×D4⋊C4).11C2 = C7×Q8.D4 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4).11C2 | 448,872 |
(C7×D4⋊C4).12C2 = C7×D4⋊Q8 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4).12C2 | 448,882 |
(C7×D4⋊C4).13C2 = C7×D4.Q8 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4).13C2 | 448,886 |
(C7×D4⋊C4).14C2 = C7×D4⋊2Q8 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4).14C2 | 448,884 |
(C7×D4⋊C4).15C2 = C7×SD16⋊C4 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4).15C2 | 448,848 |
(C7×D4⋊C4).16C2 = C7×C42.28C22 | φ: C2/C1 → C2 ⊆ Out C7×D4⋊C4 | 224 | | (C7xD4:C4).16C2 | 448,897 |
(C7×D4⋊C4).17C2 = SD16×C28 | φ: trivial image | 224 | | (C7xD4:C4).17C2 | 448,846 |