Copied to
clipboard

G = C7⋊C81D4order 448 = 26·7

1st semidirect product of C7⋊C8 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C7⋊C81D4, C71(C8⋊D4), C4⋊C4.11D14, C4.160(D4×D7), D4⋊C418D7, D142Q83C2, (C2×D4).28D14, C28.9(C4○D4), C28.Q88C2, C282D4.5C2, C28.110(C2×D4), (C2×C8).169D14, C4.26(C4○D28), (C2×Dic7).22D4, (C22×D7).12D4, C22.178(D4×D7), C2.16(D8⋊D7), C28.44D421C2, C14.17(C4⋊D4), C14.34(C8⋊C22), (C2×C56).186C22, (C2×C28).220C23, (D4×C14).41C22, C4⋊Dic7.74C22, C2.20(D14⋊D4), C2.12(SD16⋊D7), C14.30(C8.C22), (C2×Dic14).58C22, (C2×D4.D7)⋊5C2, (C2×C8⋊D7)⋊17C2, (C2×C7⋊C8).18C22, (C7×D4⋊C4)⋊24C2, (C2×C4×D7).12C22, (C2×C14).233(C2×D4), (C7×C4⋊C4).21C22, (C2×C4).327(C22×D7), SmallGroup(448,314)

Series: Derived Chief Lower central Upper central

C1C2×C28 — C7⋊C81D4
C1C7C14C28C2×C28C2×C4×D7C282D4 — C7⋊C81D4
C7C14C2×C28 — C7⋊C81D4
C1C22C2×C4D4⋊C4

Generators and relations for C7⋊C81D4
 G = < a,b,c,d | a7=b8=c4=d2=1, bab-1=cac-1=dad=a-1, cbc-1=b-1, dbd=b5, dcd=c-1 >

Subgroups: 660 in 120 conjugacy classes, 39 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, Q8, C23, D7, C14, C14, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), SD16, C22×C4, C2×D4, C2×D4, C2×Q8, Dic7, C28, C28, D14, C2×C14, C2×C14, D4⋊C4, Q8⋊C4, C2.D8, C4⋊D4, C22⋊Q8, C2×M4(2), C2×SD16, C7⋊C8, C56, Dic14, C4×D7, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C22×D7, C22×C14, C8⋊D4, C8⋊D7, C2×C7⋊C8, C4⋊Dic7, C4⋊Dic7, D14⋊C4, D4.D7, C23.D7, C7×C4⋊C4, C2×C56, C2×Dic14, C2×C4×D7, C2×C7⋊D4, D4×C14, C28.Q8, C28.44D4, C7×D4⋊C4, D142Q8, C2×C8⋊D7, C2×D4.D7, C282D4, C7⋊C81D4
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, D14, C4⋊D4, C8⋊C22, C8.C22, C22×D7, C8⋊D4, C4○D28, D4×D7, D14⋊D4, D8⋊D7, SD16⋊D7, C7⋊C81D4

Smallest permutation representation of C7⋊C81D4
On 224 points
Generators in S224
(1 59 129 207 182 44 187)(2 188 45 183 208 130 60)(3 61 131 201 184 46 189)(4 190 47 177 202 132 62)(5 63 133 203 178 48 191)(6 192 41 179 204 134 64)(7 57 135 205 180 42 185)(8 186 43 181 206 136 58)(9 172 18 215 79 123 92)(10 93 124 80 216 19 173)(11 174 20 209 73 125 94)(12 95 126 74 210 21 175)(13 176 22 211 75 127 96)(14 89 128 76 212 23 169)(15 170 24 213 77 121 90)(16 91 122 78 214 17 171)(25 36 70 88 154 116 165)(26 166 117 155 81 71 37)(27 38 72 82 156 118 167)(28 168 119 157 83 65 39)(29 40 66 84 158 120 161)(30 162 113 159 85 67 33)(31 34 68 86 160 114 163)(32 164 115 153 87 69 35)(49 104 145 138 110 217 200)(50 193 218 111 139 146 97)(51 98 147 140 112 219 194)(52 195 220 105 141 148 99)(53 100 149 142 106 221 196)(54 197 222 107 143 150 101)(55 102 151 144 108 223 198)(56 199 224 109 137 152 103)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)(161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176)(177 178 179 180 181 182 183 184)(185 186 187 188 189 190 191 192)(193 194 195 196 197 198 199 200)(201 202 203 204 205 206 207 208)(209 210 211 212 213 214 215 216)(217 218 219 220 221 222 223 224)
(1 164 217 80)(2 163 218 79)(3 162 219 78)(4 161 220 77)(5 168 221 76)(6 167 222 75)(7 166 223 74)(8 165 224 73)(9 208 68 97)(10 207 69 104)(11 206 70 103)(12 205 71 102)(13 204 72 101)(14 203 65 100)(15 202 66 99)(16 201 67 98)(17 46 159 140)(18 45 160 139)(19 44 153 138)(20 43 154 137)(21 42 155 144)(22 41 156 143)(23 48 157 142)(24 47 158 141)(25 199 125 58)(26 198 126 57)(27 197 127 64)(28 196 128 63)(29 195 121 62)(30 194 122 61)(31 193 123 60)(32 200 124 59)(33 51 91 131)(34 50 92 130)(35 49 93 129)(36 56 94 136)(37 55 95 135)(38 54 96 134)(39 53 89 133)(40 52 90 132)(81 151 175 180)(82 150 176 179)(83 149 169 178)(84 148 170 177)(85 147 171 184)(86 146 172 183)(87 145 173 182)(88 152 174 181)(105 213 190 120)(106 212 191 119)(107 211 192 118)(108 210 185 117)(109 209 186 116)(110 216 187 115)(111 215 188 114)(112 214 189 113)
(2 6)(4 8)(9 82)(10 87)(11 84)(12 81)(13 86)(14 83)(15 88)(16 85)(17 33)(18 38)(19 35)(20 40)(21 37)(22 34)(23 39)(24 36)(25 213)(26 210)(27 215)(28 212)(29 209)(30 214)(31 211)(32 216)(41 130)(42 135)(43 132)(44 129)(45 134)(46 131)(47 136)(48 133)(49 138)(50 143)(51 140)(52 137)(53 142)(54 139)(55 144)(56 141)(57 185)(58 190)(59 187)(60 192)(61 189)(62 186)(63 191)(64 188)(65 169)(66 174)(67 171)(68 176)(69 173)(70 170)(71 175)(72 172)(73 161)(74 166)(75 163)(76 168)(77 165)(78 162)(79 167)(80 164)(89 157)(90 154)(91 159)(92 156)(93 153)(94 158)(95 155)(96 160)(97 150)(98 147)(99 152)(100 149)(101 146)(102 151)(103 148)(104 145)(105 199)(106 196)(107 193)(108 198)(109 195)(110 200)(111 197)(112 194)(113 122)(114 127)(115 124)(116 121)(117 126)(118 123)(119 128)(120 125)(177 206)(178 203)(179 208)(180 205)(181 202)(182 207)(183 204)(184 201)(218 222)(220 224)

G:=sub<Sym(224)| (1,59,129,207,182,44,187)(2,188,45,183,208,130,60)(3,61,131,201,184,46,189)(4,190,47,177,202,132,62)(5,63,133,203,178,48,191)(6,192,41,179,204,134,64)(7,57,135,205,180,42,185)(8,186,43,181,206,136,58)(9,172,18,215,79,123,92)(10,93,124,80,216,19,173)(11,174,20,209,73,125,94)(12,95,126,74,210,21,175)(13,176,22,211,75,127,96)(14,89,128,76,212,23,169)(15,170,24,213,77,121,90)(16,91,122,78,214,17,171)(25,36,70,88,154,116,165)(26,166,117,155,81,71,37)(27,38,72,82,156,118,167)(28,168,119,157,83,65,39)(29,40,66,84,158,120,161)(30,162,113,159,85,67,33)(31,34,68,86,160,114,163)(32,164,115,153,87,69,35)(49,104,145,138,110,217,200)(50,193,218,111,139,146,97)(51,98,147,140,112,219,194)(52,195,220,105,141,148,99)(53,100,149,142,106,221,196)(54,197,222,107,143,150,101)(55,102,151,144,108,223,198)(56,199,224,109,137,152,103), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176)(177,178,179,180,181,182,183,184)(185,186,187,188,189,190,191,192)(193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208)(209,210,211,212,213,214,215,216)(217,218,219,220,221,222,223,224), (1,164,217,80)(2,163,218,79)(3,162,219,78)(4,161,220,77)(5,168,221,76)(6,167,222,75)(7,166,223,74)(8,165,224,73)(9,208,68,97)(10,207,69,104)(11,206,70,103)(12,205,71,102)(13,204,72,101)(14,203,65,100)(15,202,66,99)(16,201,67,98)(17,46,159,140)(18,45,160,139)(19,44,153,138)(20,43,154,137)(21,42,155,144)(22,41,156,143)(23,48,157,142)(24,47,158,141)(25,199,125,58)(26,198,126,57)(27,197,127,64)(28,196,128,63)(29,195,121,62)(30,194,122,61)(31,193,123,60)(32,200,124,59)(33,51,91,131)(34,50,92,130)(35,49,93,129)(36,56,94,136)(37,55,95,135)(38,54,96,134)(39,53,89,133)(40,52,90,132)(81,151,175,180)(82,150,176,179)(83,149,169,178)(84,148,170,177)(85,147,171,184)(86,146,172,183)(87,145,173,182)(88,152,174,181)(105,213,190,120)(106,212,191,119)(107,211,192,118)(108,210,185,117)(109,209,186,116)(110,216,187,115)(111,215,188,114)(112,214,189,113), (2,6)(4,8)(9,82)(10,87)(11,84)(12,81)(13,86)(14,83)(15,88)(16,85)(17,33)(18,38)(19,35)(20,40)(21,37)(22,34)(23,39)(24,36)(25,213)(26,210)(27,215)(28,212)(29,209)(30,214)(31,211)(32,216)(41,130)(42,135)(43,132)(44,129)(45,134)(46,131)(47,136)(48,133)(49,138)(50,143)(51,140)(52,137)(53,142)(54,139)(55,144)(56,141)(57,185)(58,190)(59,187)(60,192)(61,189)(62,186)(63,191)(64,188)(65,169)(66,174)(67,171)(68,176)(69,173)(70,170)(71,175)(72,172)(73,161)(74,166)(75,163)(76,168)(77,165)(78,162)(79,167)(80,164)(89,157)(90,154)(91,159)(92,156)(93,153)(94,158)(95,155)(96,160)(97,150)(98,147)(99,152)(100,149)(101,146)(102,151)(103,148)(104,145)(105,199)(106,196)(107,193)(108,198)(109,195)(110,200)(111,197)(112,194)(113,122)(114,127)(115,124)(116,121)(117,126)(118,123)(119,128)(120,125)(177,206)(178,203)(179,208)(180,205)(181,202)(182,207)(183,204)(184,201)(218,222)(220,224)>;

G:=Group( (1,59,129,207,182,44,187)(2,188,45,183,208,130,60)(3,61,131,201,184,46,189)(4,190,47,177,202,132,62)(5,63,133,203,178,48,191)(6,192,41,179,204,134,64)(7,57,135,205,180,42,185)(8,186,43,181,206,136,58)(9,172,18,215,79,123,92)(10,93,124,80,216,19,173)(11,174,20,209,73,125,94)(12,95,126,74,210,21,175)(13,176,22,211,75,127,96)(14,89,128,76,212,23,169)(15,170,24,213,77,121,90)(16,91,122,78,214,17,171)(25,36,70,88,154,116,165)(26,166,117,155,81,71,37)(27,38,72,82,156,118,167)(28,168,119,157,83,65,39)(29,40,66,84,158,120,161)(30,162,113,159,85,67,33)(31,34,68,86,160,114,163)(32,164,115,153,87,69,35)(49,104,145,138,110,217,200)(50,193,218,111,139,146,97)(51,98,147,140,112,219,194)(52,195,220,105,141,148,99)(53,100,149,142,106,221,196)(54,197,222,107,143,150,101)(55,102,151,144,108,223,198)(56,199,224,109,137,152,103), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)(161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176)(177,178,179,180,181,182,183,184)(185,186,187,188,189,190,191,192)(193,194,195,196,197,198,199,200)(201,202,203,204,205,206,207,208)(209,210,211,212,213,214,215,216)(217,218,219,220,221,222,223,224), (1,164,217,80)(2,163,218,79)(3,162,219,78)(4,161,220,77)(5,168,221,76)(6,167,222,75)(7,166,223,74)(8,165,224,73)(9,208,68,97)(10,207,69,104)(11,206,70,103)(12,205,71,102)(13,204,72,101)(14,203,65,100)(15,202,66,99)(16,201,67,98)(17,46,159,140)(18,45,160,139)(19,44,153,138)(20,43,154,137)(21,42,155,144)(22,41,156,143)(23,48,157,142)(24,47,158,141)(25,199,125,58)(26,198,126,57)(27,197,127,64)(28,196,128,63)(29,195,121,62)(30,194,122,61)(31,193,123,60)(32,200,124,59)(33,51,91,131)(34,50,92,130)(35,49,93,129)(36,56,94,136)(37,55,95,135)(38,54,96,134)(39,53,89,133)(40,52,90,132)(81,151,175,180)(82,150,176,179)(83,149,169,178)(84,148,170,177)(85,147,171,184)(86,146,172,183)(87,145,173,182)(88,152,174,181)(105,213,190,120)(106,212,191,119)(107,211,192,118)(108,210,185,117)(109,209,186,116)(110,216,187,115)(111,215,188,114)(112,214,189,113), (2,6)(4,8)(9,82)(10,87)(11,84)(12,81)(13,86)(14,83)(15,88)(16,85)(17,33)(18,38)(19,35)(20,40)(21,37)(22,34)(23,39)(24,36)(25,213)(26,210)(27,215)(28,212)(29,209)(30,214)(31,211)(32,216)(41,130)(42,135)(43,132)(44,129)(45,134)(46,131)(47,136)(48,133)(49,138)(50,143)(51,140)(52,137)(53,142)(54,139)(55,144)(56,141)(57,185)(58,190)(59,187)(60,192)(61,189)(62,186)(63,191)(64,188)(65,169)(66,174)(67,171)(68,176)(69,173)(70,170)(71,175)(72,172)(73,161)(74,166)(75,163)(76,168)(77,165)(78,162)(79,167)(80,164)(89,157)(90,154)(91,159)(92,156)(93,153)(94,158)(95,155)(96,160)(97,150)(98,147)(99,152)(100,149)(101,146)(102,151)(103,148)(104,145)(105,199)(106,196)(107,193)(108,198)(109,195)(110,200)(111,197)(112,194)(113,122)(114,127)(115,124)(116,121)(117,126)(118,123)(119,128)(120,125)(177,206)(178,203)(179,208)(180,205)(181,202)(182,207)(183,204)(184,201)(218,222)(220,224) );

G=PermutationGroup([[(1,59,129,207,182,44,187),(2,188,45,183,208,130,60),(3,61,131,201,184,46,189),(4,190,47,177,202,132,62),(5,63,133,203,178,48,191),(6,192,41,179,204,134,64),(7,57,135,205,180,42,185),(8,186,43,181,206,136,58),(9,172,18,215,79,123,92),(10,93,124,80,216,19,173),(11,174,20,209,73,125,94),(12,95,126,74,210,21,175),(13,176,22,211,75,127,96),(14,89,128,76,212,23,169),(15,170,24,213,77,121,90),(16,91,122,78,214,17,171),(25,36,70,88,154,116,165),(26,166,117,155,81,71,37),(27,38,72,82,156,118,167),(28,168,119,157,83,65,39),(29,40,66,84,158,120,161),(30,162,113,159,85,67,33),(31,34,68,86,160,114,163),(32,164,115,153,87,69,35),(49,104,145,138,110,217,200),(50,193,218,111,139,146,97),(51,98,147,140,112,219,194),(52,195,220,105,141,148,99),(53,100,149,142,106,221,196),(54,197,222,107,143,150,101),(55,102,151,144,108,223,198),(56,199,224,109,137,152,103)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160),(161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176),(177,178,179,180,181,182,183,184),(185,186,187,188,189,190,191,192),(193,194,195,196,197,198,199,200),(201,202,203,204,205,206,207,208),(209,210,211,212,213,214,215,216),(217,218,219,220,221,222,223,224)], [(1,164,217,80),(2,163,218,79),(3,162,219,78),(4,161,220,77),(5,168,221,76),(6,167,222,75),(7,166,223,74),(8,165,224,73),(9,208,68,97),(10,207,69,104),(11,206,70,103),(12,205,71,102),(13,204,72,101),(14,203,65,100),(15,202,66,99),(16,201,67,98),(17,46,159,140),(18,45,160,139),(19,44,153,138),(20,43,154,137),(21,42,155,144),(22,41,156,143),(23,48,157,142),(24,47,158,141),(25,199,125,58),(26,198,126,57),(27,197,127,64),(28,196,128,63),(29,195,121,62),(30,194,122,61),(31,193,123,60),(32,200,124,59),(33,51,91,131),(34,50,92,130),(35,49,93,129),(36,56,94,136),(37,55,95,135),(38,54,96,134),(39,53,89,133),(40,52,90,132),(81,151,175,180),(82,150,176,179),(83,149,169,178),(84,148,170,177),(85,147,171,184),(86,146,172,183),(87,145,173,182),(88,152,174,181),(105,213,190,120),(106,212,191,119),(107,211,192,118),(108,210,185,117),(109,209,186,116),(110,216,187,115),(111,215,188,114),(112,214,189,113)], [(2,6),(4,8),(9,82),(10,87),(11,84),(12,81),(13,86),(14,83),(15,88),(16,85),(17,33),(18,38),(19,35),(20,40),(21,37),(22,34),(23,39),(24,36),(25,213),(26,210),(27,215),(28,212),(29,209),(30,214),(31,211),(32,216),(41,130),(42,135),(43,132),(44,129),(45,134),(46,131),(47,136),(48,133),(49,138),(50,143),(51,140),(52,137),(53,142),(54,139),(55,144),(56,141),(57,185),(58,190),(59,187),(60,192),(61,189),(62,186),(63,191),(64,188),(65,169),(66,174),(67,171),(68,176),(69,173),(70,170),(71,175),(72,172),(73,161),(74,166),(75,163),(76,168),(77,165),(78,162),(79,167),(80,164),(89,157),(90,154),(91,159),(92,156),(93,153),(94,158),(95,155),(96,160),(97,150),(98,147),(99,152),(100,149),(101,146),(102,151),(103,148),(104,145),(105,199),(106,196),(107,193),(108,198),(109,195),(110,200),(111,197),(112,194),(113,122),(114,127),(115,124),(116,121),(117,126),(118,123),(119,128),(120,125),(177,206),(178,203),(179,208),(180,205),(181,202),(182,207),(183,204),(184,201),(218,222),(220,224)]])

58 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F7A7B7C8A8B8C8D14A···14I14J···14O28A···28F28G···28L56A···56L
order122222444444777888814···1414···1428···2828···2856···56
size11118282282856562224428282···28···84···48···84···4

58 irreducible representations

dim11111111222222222444444
type++++++++++++++++-++-
imageC1C2C2C2C2C2C2C2D4D4D4D7C4○D4D14D14D14C4○D28C8⋊C22C8.C22D4×D7D4×D7D8⋊D7SD16⋊D7
kernelC7⋊C81D4C28.Q8C28.44D4C7×D4⋊C4D142Q8C2×C8⋊D7C2×D4.D7C282D4C7⋊C8C2×Dic7C22×D7D4⋊C4C28C4⋊C4C2×C8C2×D4C4C14C14C4C22C2C2
# reps111111112113233312113366

Matrix representation of C7⋊C81D4 in GL8(𝔽113)

79112000000
10000000
001041120000
002880000
0000911200
00001000
0000009112
00000010
,
62327660000
42512180000
51395560000
3220101580000
000037427671
000036767737
000037423742
000036763676
,
73110107310000
1403220000
1004434210000
489621790000
000040950
0000361096418
00009501090
00006418774
,
10000000
79112000000
81435880000
661958780000
00001000
0000911200
00000010
0000009112

G:=sub<GL(8,GF(113))| [79,1,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,0,104,2,0,0,0,0,0,0,112,88,0,0,0,0,0,0,0,0,9,1,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,0,9,1,0,0,0,0,0,0,112,0],[62,42,51,32,0,0,0,0,3,51,39,20,0,0,0,0,27,2,55,101,0,0,0,0,66,18,6,58,0,0,0,0,0,0,0,0,37,36,37,36,0,0,0,0,42,76,42,76,0,0,0,0,76,77,37,36,0,0,0,0,71,37,42,76],[73,1,100,48,0,0,0,0,110,40,44,96,0,0,0,0,107,3,34,21,0,0,0,0,31,22,21,79,0,0,0,0,0,0,0,0,4,36,95,64,0,0,0,0,0,109,0,18,0,0,0,0,95,64,109,77,0,0,0,0,0,18,0,4],[1,79,81,66,0,0,0,0,0,112,4,19,0,0,0,0,0,0,35,58,0,0,0,0,0,0,88,78,0,0,0,0,0,0,0,0,1,9,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,1,9,0,0,0,0,0,0,0,112] >;

C7⋊C81D4 in GAP, Magma, Sage, TeX

C_7\rtimes C_8\rtimes_1D_4
% in TeX

G:=Group("C7:C8:1D4");
// GroupNames label

G:=SmallGroup(448,314);
// by ID

G=gap.SmallGroup(448,314);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,253,1094,135,100,570,297,136,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^8=c^4=d^2=1,b*a*b^-1=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=b^-1,d*b*d=b^5,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽