Copied to
clipboard

G = D4.6D28order 448 = 26·7

1st non-split extension by D4 of D28 acting via D28/D14=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4.6D28, D28.8D4, D145SD16, C4⋊C42D14, D14⋊C89C2, (C2×C8)⋊16D14, (C7×D4).1D4, C4.2(C2×D28), C28.1(C2×D4), C4.85(D4×D7), C14.D87C2, D4⋊C410D7, (C2×C56)⋊15C22, D142Q81C2, C72(C22⋊SD16), C2.11(D7×SD16), C14.20C22≀C2, (C2×D4).135D14, (C2×Dic7).20D4, C14.23(C2×SD16), (C22×D7).72D4, C22.174(D4×D7), C2.13(D8⋊D7), C14.31(C8⋊C22), (C2×C28).216C23, (D4×C14).37C22, (C2×D28).50C22, C2.23(C22⋊D28), (C2×Dic14)⋊13C22, (C2×D4×D7).5C2, (C2×C7⋊C8)⋊3C22, (C7×C4⋊C4)⋊4C22, (C2×D4.D7)⋊3C2, (C2×C56⋊C2)⋊14C2, (C2×C4×D7).9C22, (C7×D4⋊C4)⋊10C2, (C2×C14).229(C2×D4), (C2×C4).323(C22×D7), SmallGroup(448,310)

Series: Derived Chief Lower central Upper central

C1C2×C28 — D4.6D28
C1C7C14C28C2×C28C2×C4×D7C2×D4×D7 — D4.6D28
C7C14C2×C28 — D4.6D28
C1C22C2×C4D4⋊C4

Generators and relations for D4.6D28
 G = < a,b,c,d | a28=b2=c4=1, d2=a7, bab=a-1, cac-1=a15, ad=da, cbc-1=a7b, dbd-1=a21b, dcd-1=a7c-1 >

Subgroups: 1332 in 188 conjugacy classes, 45 normal (37 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C2×C4, C2×C4, D4, D4, Q8, C23, D7, C14, C14, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, C22×C4, C2×D4, C2×D4, C2×Q8, C24, Dic7, C28, C28, D14, D14, C2×C14, C2×C14, C22⋊C8, D4⋊C4, D4⋊C4, C22⋊Q8, C2×SD16, C22×D4, C7⋊C8, C56, Dic14, C4×D7, D28, D28, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C7×D4, C22×D7, C22×D7, C22×C14, C22⋊SD16, C56⋊C2, C2×C7⋊C8, C4⋊Dic7, D14⋊C4, D4.D7, C7×C4⋊C4, C2×C56, C2×Dic14, C2×C4×D7, C2×D28, D4×D7, C2×C7⋊D4, D4×C14, C23×D7, C14.D8, D14⋊C8, C7×D4⋊C4, D142Q8, C2×C56⋊C2, C2×D4.D7, C2×D4×D7, D4.6D28
Quotients: C1, C2, C22, D4, C23, D7, SD16, C2×D4, D14, C22≀C2, C2×SD16, C8⋊C22, D28, C22×D7, C22⋊SD16, C2×D28, D4×D7, C22⋊D28, D8⋊D7, D7×SD16, D4.6D28

Smallest permutation representation of D4.6D28
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 21)(2 20)(3 19)(4 18)(5 17)(6 16)(7 15)(8 14)(9 13)(10 12)(22 28)(23 27)(24 26)(30 56)(31 55)(32 54)(33 53)(34 52)(35 51)(36 50)(37 49)(38 48)(39 47)(40 46)(41 45)(42 44)(57 76)(58 75)(59 74)(60 73)(61 72)(62 71)(63 70)(64 69)(65 68)(66 67)(77 84)(78 83)(79 82)(80 81)(85 96)(86 95)(87 94)(88 93)(89 92)(90 91)(97 112)(98 111)(99 110)(100 109)(101 108)(102 107)(103 106)(104 105)
(1 67 47 91)(2 82 48 106)(3 69 49 93)(4 84 50 108)(5 71 51 95)(6 58 52 110)(7 73 53 97)(8 60 54 112)(9 75 55 99)(10 62 56 86)(11 77 29 101)(12 64 30 88)(13 79 31 103)(14 66 32 90)(15 81 33 105)(16 68 34 92)(17 83 35 107)(18 70 36 94)(19 57 37 109)(20 72 38 96)(21 59 39 111)(22 74 40 98)(23 61 41 85)(24 76 42 100)(25 63 43 87)(26 78 44 102)(27 65 45 89)(28 80 46 104)
(1 91 8 98 15 105 22 112)(2 92 9 99 16 106 23 85)(3 93 10 100 17 107 24 86)(4 94 11 101 18 108 25 87)(5 95 12 102 19 109 26 88)(6 96 13 103 20 110 27 89)(7 97 14 104 21 111 28 90)(29 77 36 84 43 63 50 70)(30 78 37 57 44 64 51 71)(31 79 38 58 45 65 52 72)(32 80 39 59 46 66 53 73)(33 81 40 60 47 67 54 74)(34 82 41 61 48 68 55 75)(35 83 42 62 49 69 56 76)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,21)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(22,28)(23,27)(24,26)(30,56)(31,55)(32,54)(33,53)(34,52)(35,51)(36,50)(37,49)(38,48)(39,47)(40,46)(41,45)(42,44)(57,76)(58,75)(59,74)(60,73)(61,72)(62,71)(63,70)(64,69)(65,68)(66,67)(77,84)(78,83)(79,82)(80,81)(85,96)(86,95)(87,94)(88,93)(89,92)(90,91)(97,112)(98,111)(99,110)(100,109)(101,108)(102,107)(103,106)(104,105), (1,67,47,91)(2,82,48,106)(3,69,49,93)(4,84,50,108)(5,71,51,95)(6,58,52,110)(7,73,53,97)(8,60,54,112)(9,75,55,99)(10,62,56,86)(11,77,29,101)(12,64,30,88)(13,79,31,103)(14,66,32,90)(15,81,33,105)(16,68,34,92)(17,83,35,107)(18,70,36,94)(19,57,37,109)(20,72,38,96)(21,59,39,111)(22,74,40,98)(23,61,41,85)(24,76,42,100)(25,63,43,87)(26,78,44,102)(27,65,45,89)(28,80,46,104), (1,91,8,98,15,105,22,112)(2,92,9,99,16,106,23,85)(3,93,10,100,17,107,24,86)(4,94,11,101,18,108,25,87)(5,95,12,102,19,109,26,88)(6,96,13,103,20,110,27,89)(7,97,14,104,21,111,28,90)(29,77,36,84,43,63,50,70)(30,78,37,57,44,64,51,71)(31,79,38,58,45,65,52,72)(32,80,39,59,46,66,53,73)(33,81,40,60,47,67,54,74)(34,82,41,61,48,68,55,75)(35,83,42,62,49,69,56,76)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,21)(2,20)(3,19)(4,18)(5,17)(6,16)(7,15)(8,14)(9,13)(10,12)(22,28)(23,27)(24,26)(30,56)(31,55)(32,54)(33,53)(34,52)(35,51)(36,50)(37,49)(38,48)(39,47)(40,46)(41,45)(42,44)(57,76)(58,75)(59,74)(60,73)(61,72)(62,71)(63,70)(64,69)(65,68)(66,67)(77,84)(78,83)(79,82)(80,81)(85,96)(86,95)(87,94)(88,93)(89,92)(90,91)(97,112)(98,111)(99,110)(100,109)(101,108)(102,107)(103,106)(104,105), (1,67,47,91)(2,82,48,106)(3,69,49,93)(4,84,50,108)(5,71,51,95)(6,58,52,110)(7,73,53,97)(8,60,54,112)(9,75,55,99)(10,62,56,86)(11,77,29,101)(12,64,30,88)(13,79,31,103)(14,66,32,90)(15,81,33,105)(16,68,34,92)(17,83,35,107)(18,70,36,94)(19,57,37,109)(20,72,38,96)(21,59,39,111)(22,74,40,98)(23,61,41,85)(24,76,42,100)(25,63,43,87)(26,78,44,102)(27,65,45,89)(28,80,46,104), (1,91,8,98,15,105,22,112)(2,92,9,99,16,106,23,85)(3,93,10,100,17,107,24,86)(4,94,11,101,18,108,25,87)(5,95,12,102,19,109,26,88)(6,96,13,103,20,110,27,89)(7,97,14,104,21,111,28,90)(29,77,36,84,43,63,50,70)(30,78,37,57,44,64,51,71)(31,79,38,58,45,65,52,72)(32,80,39,59,46,66,53,73)(33,81,40,60,47,67,54,74)(34,82,41,61,48,68,55,75)(35,83,42,62,49,69,56,76) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,21),(2,20),(3,19),(4,18),(5,17),(6,16),(7,15),(8,14),(9,13),(10,12),(22,28),(23,27),(24,26),(30,56),(31,55),(32,54),(33,53),(34,52),(35,51),(36,50),(37,49),(38,48),(39,47),(40,46),(41,45),(42,44),(57,76),(58,75),(59,74),(60,73),(61,72),(62,71),(63,70),(64,69),(65,68),(66,67),(77,84),(78,83),(79,82),(80,81),(85,96),(86,95),(87,94),(88,93),(89,92),(90,91),(97,112),(98,111),(99,110),(100,109),(101,108),(102,107),(103,106),(104,105)], [(1,67,47,91),(2,82,48,106),(3,69,49,93),(4,84,50,108),(5,71,51,95),(6,58,52,110),(7,73,53,97),(8,60,54,112),(9,75,55,99),(10,62,56,86),(11,77,29,101),(12,64,30,88),(13,79,31,103),(14,66,32,90),(15,81,33,105),(16,68,34,92),(17,83,35,107),(18,70,36,94),(19,57,37,109),(20,72,38,96),(21,59,39,111),(22,74,40,98),(23,61,41,85),(24,76,42,100),(25,63,43,87),(26,78,44,102),(27,65,45,89),(28,80,46,104)], [(1,91,8,98,15,105,22,112),(2,92,9,99,16,106,23,85),(3,93,10,100,17,107,24,86),(4,94,11,101,18,108,25,87),(5,95,12,102,19,109,26,88),(6,96,13,103,20,110,27,89),(7,97,14,104,21,111,28,90),(29,77,36,84,43,63,50,70),(30,78,37,57,44,64,51,71),(31,79,38,58,45,65,52,72),(32,80,39,59,46,66,53,73),(33,81,40,60,47,67,54,74),(34,82,41,61,48,68,55,75),(35,83,42,62,49,69,56,76)]])

61 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E7A7B7C8A8B8C8D14A···14I14J···14O28A···28F28G···28L56A···56L
order122222222244444777888814···1414···1428···2828···2856···56
size1111441414282822828562224428282···28···84···48···84···4

61 irreducible representations

dim11111111222222222244444
type++++++++++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D4D4D7SD16D14D14D14D28C8⋊C22D4×D7D4×D7D8⋊D7D7×SD16
kernelD4.6D28C14.D8D14⋊C8C7×D4⋊C4D142Q8C2×C56⋊C2C2×D4.D7C2×D4×D7D28C2×Dic7C7×D4C22×D7D4⋊C4D14C4⋊C4C2×C8C2×D4D4C14C4C22C2C2
# reps111111112121343331213366

Matrix representation of D4.6D28 in GL4(𝔽113) generated by

1127200
91100
008979
00100
,
1000
2211200
00079
001030
,
268100
608700
001767
008096
,
08100
608700
009646
003317
G:=sub<GL(4,GF(113))| [112,91,0,0,72,1,0,0,0,0,89,10,0,0,79,0],[1,22,0,0,0,112,0,0,0,0,0,103,0,0,79,0],[26,60,0,0,81,87,0,0,0,0,17,80,0,0,67,96],[0,60,0,0,81,87,0,0,0,0,96,33,0,0,46,17] >;

D4.6D28 in GAP, Magma, Sage, TeX

D_4._6D_{28}
% in TeX

G:=Group("D4.6D28");
// GroupNames label

G:=SmallGroup(448,310);
// by ID

G=gap.SmallGroup(448,310);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,422,135,268,570,297,136,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^28=b^2=c^4=1,d^2=a^7,b*a*b=a^-1,c*a*c^-1=a^15,a*d=d*a,c*b*c^-1=a^7*b,d*b*d^-1=a^21*b,d*c*d^-1=a^7*c^-1>;
// generators/relations

׿
×
𝔽