# Extensions 1→N→G→Q→1 with N=D4×C28 and Q=C2

Direct product G=N×Q with N=D4×C28 and Q=C2
dρLabelID
D4×C2×C28224D4xC2xC28448,1298

Semidirect products G=N:Q with N=D4×C28 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×C28)⋊1C2 = C4×D4⋊D7φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):1C2448,547
(D4×C28)⋊2C2 = C42.48D14φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):2C2448,548
(D4×C28)⋊3C2 = C287D8φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):3C2448,549
(D4×C28)⋊4C2 = D4.1D28φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):4C2448,550
(D4×C28)⋊5C2 = C4×D42D7φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):5C2448,989
(D4×C28)⋊6C2 = C42.102D14φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):6C2448,991
(D4×C28)⋊7C2 = C42.104D14φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):7C2448,993
(D4×C28)⋊8C2 = C4×D4×D7φ: C2/C1C2 ⊆ Out D4×C28112(D4xC28):8C2448,997
(D4×C28)⋊9C2 = C4211D14φ: C2/C1C2 ⊆ Out D4×C28112(D4xC28):9C2448,998
(D4×C28)⋊10C2 = C42.108D14φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):10C2448,999
(D4×C28)⋊11C2 = C4212D14φ: C2/C1C2 ⊆ Out D4×C28112(D4xC28):11C2448,1000
(D4×C28)⋊12C2 = C42.228D14φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):12C2448,1001
(D4×C28)⋊13C2 = D4×D28φ: C2/C1C2 ⊆ Out D4×C28112(D4xC28):13C2448,1002
(D4×C28)⋊14C2 = D2823D4φ: C2/C1C2 ⊆ Out D4×C28112(D4xC28):14C2448,1003
(D4×C28)⋊15C2 = D2824D4φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):15C2448,1004
(D4×C28)⋊16C2 = Dic1423D4φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):16C2448,1005
(D4×C28)⋊17C2 = Dic1424D4φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):17C2448,1006
(D4×C28)⋊18C2 = D45D28φ: C2/C1C2 ⊆ Out D4×C28112(D4xC28):18C2448,1007
(D4×C28)⋊19C2 = D46D28φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):19C2448,1008
(D4×C28)⋊20C2 = C4216D14φ: C2/C1C2 ⊆ Out D4×C28112(D4xC28):20C2448,1009
(D4×C28)⋊21C2 = C42.229D14φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):21C2448,1010
(D4×C28)⋊22C2 = C42.113D14φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):22C2448,1011
(D4×C28)⋊23C2 = C42.114D14φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):23C2448,1012
(D4×C28)⋊24C2 = C4217D14φ: C2/C1C2 ⊆ Out D4×C28112(D4xC28):24C2448,1013
(D4×C28)⋊25C2 = C42.115D14φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):25C2448,1014
(D4×C28)⋊26C2 = C42.116D14φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):26C2448,1015
(D4×C28)⋊27C2 = C42.117D14φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):27C2448,1016
(D4×C28)⋊28C2 = C42.118D14φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):28C2448,1017
(D4×C28)⋊29C2 = C42.119D14φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):29C2448,1018
(D4×C28)⋊30C2 = D8×C28φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):30C2448,845
(D4×C28)⋊31C2 = C7×D8⋊C4φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):31C2448,850
(D4×C28)⋊32C2 = C7×C4⋊D8φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):32C2448,867
(D4×C28)⋊33C2 = C7×D4.2D4φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):33C2448,871
(D4×C28)⋊34C2 = C7×C22.11C24φ: C2/C1C2 ⊆ Out D4×C28112(D4xC28):34C2448,1301
(D4×C28)⋊35C2 = C7×C23.33C23φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):35C2448,1303
(D4×C28)⋊36C2 = C7×C22.19C24φ: C2/C1C2 ⊆ Out D4×C28112(D4xC28):36C2448,1308
(D4×C28)⋊37C2 = C7×C23.36C23φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):37C2448,1312
(D4×C28)⋊38C2 = C7×C22.26C24φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):38C2448,1315
(D4×C28)⋊39C2 = C7×C22.32C24φ: C2/C1C2 ⊆ Out D4×C28112(D4xC28):39C2448,1321
(D4×C28)⋊40C2 = C7×C22.33C24φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):40C2448,1322
(D4×C28)⋊41C2 = C7×C22.34C24φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):41C2448,1323
(D4×C28)⋊42C2 = C7×C22.36C24φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):42C2448,1325
(D4×C28)⋊43C2 = C7×D42φ: C2/C1C2 ⊆ Out D4×C28112(D4xC28):43C2448,1328
(D4×C28)⋊44C2 = C7×D45D4φ: C2/C1C2 ⊆ Out D4×C28112(D4xC28):44C2448,1329
(D4×C28)⋊45C2 = C7×D46D4φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):45C2448,1330
(D4×C28)⋊46C2 = C7×Q85D4φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):46C2448,1331
(D4×C28)⋊47C2 = C7×Q86D4φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):47C2448,1333
(D4×C28)⋊48C2 = C7×C22.45C24φ: C2/C1C2 ⊆ Out D4×C28112(D4xC28):48C2448,1334
(D4×C28)⋊49C2 = C7×C22.47C24φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):49C2448,1336
(D4×C28)⋊50C2 = C7×C22.49C24φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):50C2448,1338
(D4×C28)⋊51C2 = C7×C22.53C24φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28):51C2448,1342
(D4×C28)⋊52C2 = C4○D4×C28φ: trivial image224(D4xC28):52C2448,1300

Non-split extensions G=N.Q with N=D4×C28 and Q=C2
extensionφ:Q→Out NdρLabelID
(D4×C28).1C2 = C28.57D8φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28).1C2448,91
(D4×C28).2C2 = C28.50D8φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28).2C2448,541
(D4×C28).3C2 = C28.38SD16φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28).3C2448,542
(D4×C28).4C2 = D4.3Dic14φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28).4C2448,543
(D4×C28).5C2 = D4×C7⋊C8φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28).5C2448,544
(D4×C28).6C2 = C42.47D14φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28).6C2448,545
(D4×C28).7C2 = C283M4(2)φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28).7C2448,546
(D4×C28).8C2 = C4×D4.D7φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28).8C2448,551
(D4×C28).9C2 = C42.51D14φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28).9C2448,552
(D4×C28).10C2 = D4.2D28φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28).10C2448,553
(D4×C28).11C2 = D4×Dic14φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28).11C2448,990
(D4×C28).12C2 = D45Dic14φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28).12C2448,992
(D4×C28).13C2 = C42.105D14φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28).13C2448,994
(D4×C28).14C2 = C42.106D14φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28).14C2448,995
(D4×C28).15C2 = D46Dic14φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28).15C2448,996
(D4×C28).16C2 = C7×D4⋊C8φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28).16C2448,129
(D4×C28).17C2 = C7×C89D4φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28).17C2448,843
(D4×C28).18C2 = C7×C86D4φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28).18C2448,844
(D4×C28).19C2 = SD16×C28φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28).19C2448,846
(D4×C28).20C2 = C7×SD16⋊C4φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28).20C2448,848
(D4×C28).21C2 = C7×D4.D4φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28).21C2448,869
(D4×C28).22C2 = C7×D4⋊Q8φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28).22C2448,882
(D4×C28).23C2 = C7×D42Q8φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28).23C2448,884
(D4×C28).24C2 = C7×D4.Q8φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28).24C2448,886
(D4×C28).25C2 = C7×D4×Q8φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28).25C2448,1332
(D4×C28).26C2 = C7×C22.46C24φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28).26C2448,1335
(D4×C28).27C2 = C7×D43Q8φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28).27C2448,1337
(D4×C28).28C2 = C7×C22.50C24φ: C2/C1C2 ⊆ Out D4×C28224(D4xC28).28C2448,1339
(D4×C28).29C2 = D4×C56φ: trivial image224(D4xC28).29C2448,842

׿
×
𝔽