Copied to
clipboard

G = D4×C28order 224 = 25·7

Direct product of C28 and D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: D4×C28, C424C14, C4⋊C47C14, C41(C2×C28), C286(C2×C4), (C4×C28)⋊11C2, C2.3(D4×C14), C22⋊C46C14, (C22×C28)⋊4C2, C221(C2×C28), (C22×C4)⋊2C14, (C2×D4).7C14, C14.66(C2×D4), (D4×C14).14C2, C2.4(C22×C28), C23.7(C2×C14), C14.39(C4○D4), (C2×C14).73C23, C14.32(C22×C4), (C2×C28).121C22, C22.7(C22×C14), (C22×C14).26C22, (C7×C4⋊C4)⋊16C2, (C2×C14)⋊4(C2×C4), (C2×C28)(D4×C14), C2.2(C7×C4○D4), (C7×C22⋊C4)⋊14C2, (C2×C4).15(C2×C14), (C2×C28)(C7×C4⋊C4), (C2×C28)(C7×C22⋊C4), SmallGroup(224,153)

Series: Derived Chief Lower central Upper central

C1C2 — D4×C28
C1C2C22C2×C14C2×C28C7×C22⋊C4 — D4×C28
C1C2 — D4×C28
C1C2×C28 — D4×C28

Generators and relations for D4×C28
 G = < a,b,c | a28=b4=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 124 in 94 conjugacy classes, 64 normal (24 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C7, C2×C4, C2×C4, C2×C4, D4, C23, C14, C14, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C28, C28, C2×C14, C2×C14, C2×C14, C4×D4, C2×C28, C2×C28, C2×C28, C7×D4, C22×C14, C4×C28, C7×C22⋊C4, C7×C4⋊C4, C22×C28, D4×C14, D4×C28
Quotients: C1, C2, C4, C22, C7, C2×C4, D4, C23, C14, C22×C4, C2×D4, C4○D4, C28, C2×C14, C4×D4, C2×C28, C7×D4, C22×C14, C22×C28, D4×C14, C7×C4○D4, D4×C28

Smallest permutation representation of D4×C28
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 108 67 30)(2 109 68 31)(3 110 69 32)(4 111 70 33)(5 112 71 34)(6 85 72 35)(7 86 73 36)(8 87 74 37)(9 88 75 38)(10 89 76 39)(11 90 77 40)(12 91 78 41)(13 92 79 42)(14 93 80 43)(15 94 81 44)(16 95 82 45)(17 96 83 46)(18 97 84 47)(19 98 57 48)(20 99 58 49)(21 100 59 50)(22 101 60 51)(23 102 61 52)(24 103 62 53)(25 104 63 54)(26 105 64 55)(27 106 65 56)(28 107 66 29)
(1 15)(2 16)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 23)(10 24)(11 25)(12 26)(13 27)(14 28)(29 93)(30 94)(31 95)(32 96)(33 97)(34 98)(35 99)(36 100)(37 101)(38 102)(39 103)(40 104)(41 105)(42 106)(43 107)(44 108)(45 109)(46 110)(47 111)(48 112)(49 85)(50 86)(51 87)(52 88)(53 89)(54 90)(55 91)(56 92)(57 71)(58 72)(59 73)(60 74)(61 75)(62 76)(63 77)(64 78)(65 79)(66 80)(67 81)(68 82)(69 83)(70 84)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,108,67,30)(2,109,68,31)(3,110,69,32)(4,111,70,33)(5,112,71,34)(6,85,72,35)(7,86,73,36)(8,87,74,37)(9,88,75,38)(10,89,76,39)(11,90,77,40)(12,91,78,41)(13,92,79,42)(14,93,80,43)(15,94,81,44)(16,95,82,45)(17,96,83,46)(18,97,84,47)(19,98,57,48)(20,99,58,49)(21,100,59,50)(22,101,60,51)(23,102,61,52)(24,103,62,53)(25,104,63,54)(26,105,64,55)(27,106,65,56)(28,107,66,29), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,93)(30,94)(31,95)(32,96)(33,97)(34,98)(35,99)(36,100)(37,101)(38,102)(39,103)(40,104)(41,105)(42,106)(43,107)(44,108)(45,109)(46,110)(47,111)(48,112)(49,85)(50,86)(51,87)(52,88)(53,89)(54,90)(55,91)(56,92)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,108,67,30)(2,109,68,31)(3,110,69,32)(4,111,70,33)(5,112,71,34)(6,85,72,35)(7,86,73,36)(8,87,74,37)(9,88,75,38)(10,89,76,39)(11,90,77,40)(12,91,78,41)(13,92,79,42)(14,93,80,43)(15,94,81,44)(16,95,82,45)(17,96,83,46)(18,97,84,47)(19,98,57,48)(20,99,58,49)(21,100,59,50)(22,101,60,51)(23,102,61,52)(24,103,62,53)(25,104,63,54)(26,105,64,55)(27,106,65,56)(28,107,66,29), (1,15)(2,16)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,23)(10,24)(11,25)(12,26)(13,27)(14,28)(29,93)(30,94)(31,95)(32,96)(33,97)(34,98)(35,99)(36,100)(37,101)(38,102)(39,103)(40,104)(41,105)(42,106)(43,107)(44,108)(45,109)(46,110)(47,111)(48,112)(49,85)(50,86)(51,87)(52,88)(53,89)(54,90)(55,91)(56,92)(57,71)(58,72)(59,73)(60,74)(61,75)(62,76)(63,77)(64,78)(65,79)(66,80)(67,81)(68,82)(69,83)(70,84) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,108,67,30),(2,109,68,31),(3,110,69,32),(4,111,70,33),(5,112,71,34),(6,85,72,35),(7,86,73,36),(8,87,74,37),(9,88,75,38),(10,89,76,39),(11,90,77,40),(12,91,78,41),(13,92,79,42),(14,93,80,43),(15,94,81,44),(16,95,82,45),(17,96,83,46),(18,97,84,47),(19,98,57,48),(20,99,58,49),(21,100,59,50),(22,101,60,51),(23,102,61,52),(24,103,62,53),(25,104,63,54),(26,105,64,55),(27,106,65,56),(28,107,66,29)], [(1,15),(2,16),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,23),(10,24),(11,25),(12,26),(13,27),(14,28),(29,93),(30,94),(31,95),(32,96),(33,97),(34,98),(35,99),(36,100),(37,101),(38,102),(39,103),(40,104),(41,105),(42,106),(43,107),(44,108),(45,109),(46,110),(47,111),(48,112),(49,85),(50,86),(51,87),(52,88),(53,89),(54,90),(55,91),(56,92),(57,71),(58,72),(59,73),(60,74),(61,75),(62,76),(63,77),(64,78),(65,79),(66,80),(67,81),(68,82),(69,83),(70,84)]])

D4×C28 is a maximal subgroup of
C28.57D8  C28.50D8  C28.38SD16  D4.3Dic14  C42.47D14  C283M4(2)  C42.48D14  C287D8  D4.1D28  C42.51D14  D4.2D28  C42.102D14  D45Dic14  C42.104D14  C42.105D14  C42.106D14  D46Dic14  C4211D14  C42.108D14  C4212D14  C42.228D14  D2823D4  D2824D4  Dic1423D4  Dic1424D4  D45D28  D46D28  C4216D14  C42.229D14  C42.113D14  C42.114D14  C4217D14  C42.115D14  C42.116D14  C42.117D14  C42.118D14  C42.119D14

140 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E···4L7A···7F14A···14R14S···14AP28A···28X28Y···28BT
order1222222244444···47···714···1414···1428···2828···28
size1111222211112···21···11···12···21···12···2

140 irreducible representations

dim111111111111112222
type+++++++
imageC1C2C2C2C2C2C4C7C14C14C14C14C14C28D4C4○D4C7×D4C7×C4○D4
kernelD4×C28C4×C28C7×C22⋊C4C7×C4⋊C4C22×C28D4×C14C7×D4C4×D4C42C22⋊C4C4⋊C4C22×C4C2×D4D4C28C14C4C2
# reps11212186612612648221212

Matrix representation of D4×C28 in GL3(𝔽29) generated by

1200
0200
0020
,
100
012
02828
,
100
010
02828
G:=sub<GL(3,GF(29))| [12,0,0,0,20,0,0,0,20],[1,0,0,0,1,28,0,2,28],[1,0,0,0,1,28,0,0,28] >;

D4×C28 in GAP, Magma, Sage, TeX

D_4\times C_{28}
% in TeX

G:=Group("D4xC28");
// GroupNames label

G:=SmallGroup(224,153);
// by ID

G=gap.SmallGroup(224,153);
# by ID

G:=PCGroup([6,-2,-2,-2,-7,-2,-2,672,697,518]);
// Polycyclic

G:=Group<a,b,c|a^28=b^4=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽