Copied to
clipboard

G = D2823D4order 448 = 26·7

1st semidirect product of D28 and D4 acting through Inn(D28)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D2823D4, C4214D14, C14.1032+ 1+4, C4⋊C447D14, (C4×D4)⋊12D7, (D4×C28)⋊14C2, (C4×D28)⋊28C2, C72(D45D4), C4.139(D4×D7), D14⋊D47C2, C287D418C2, (C4×C28)⋊19C22, C22⋊C446D14, D14.14(C2×D4), C28.345(C2×D4), (C22×D28)⋊9C2, (C22×C4)⋊12D14, C23⋊D1420C2, D14⋊C430C22, D14.5D47C2, (C2×D4).213D14, C4.D2816C2, C223(C4○D28), (C2×C14).94C24, Dic7⋊C43C22, C4⋊Dic759C22, C14.49(C22×D4), C28.48D410C2, (C2×C28).782C23, (C22×C28)⋊16C22, C2.15(D48D14), C23.94(C22×D7), (C2×Dic14)⋊53C22, (D4×C14).305C22, (C2×D28).210C22, (C2×Dic7).40C23, (C23×D7).39C22, C22.119(C23×D7), C23.D7.11C22, (C22×C14).164C23, (C22×D7).172C23, C2.22(C2×D4×D7), (C2×C4○D28)⋊7C2, (C2×C4×D7)⋊48C22, (C2×C14)⋊2(C4○D4), (C7×C4⋊C4)⋊59C22, (D7×C22⋊C4)⋊28C2, C2.45(C2×C4○D28), C14.41(C2×C4○D4), (C2×C7⋊D4)⋊3C22, (C7×C22⋊C4)⋊56C22, (C2×C4).158(C22×D7), SmallGroup(448,1003)

Series: Derived Chief Lower central Upper central

C1C2×C14 — D2823D4
C1C7C14C2×C14C22×D7C23×D7D7×C22⋊C4 — D2823D4
C7C2×C14 — D2823D4
C1C22C4×D4

Generators and relations for D2823D4
 G = < a,b,c,d | a28=b2=c4=d2=1, bab=a-1, ac=ca, ad=da, cbc-1=a14b, bd=db, dcd=c-1 >

Subgroups: 1908 in 334 conjugacy classes, 107 normal (51 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C7, C2×C4, C2×C4, D4, Q8, C23, C23, D7, C14, C14, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, Dic7, C28, C28, D14, D14, C2×C14, C2×C14, C2×C14, C2×C22⋊C4, C4×D4, C4×D4, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C22×D4, C2×C4○D4, Dic14, C4×D7, D28, D28, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C22×D7, C22×D7, C22×C14, D45D4, Dic7⋊C4, C4⋊Dic7, D14⋊C4, C23.D7, C4×C28, C7×C22⋊C4, C7×C4⋊C4, C2×Dic14, C2×C4×D7, C2×D28, C2×D28, C2×D28, C4○D28, C2×C7⋊D4, C22×C28, D4×C14, C23×D7, C4×D28, C4.D28, D7×C22⋊C4, D14⋊D4, D14.5D4, C28.48D4, C287D4, C23⋊D14, D4×C28, C22×D28, C2×C4○D28, D2823D4
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C4○D4, C24, D14, C22×D4, C2×C4○D4, 2+ 1+4, C22×D7, D45D4, C4○D28, D4×D7, C23×D7, C2×C4○D28, C2×D4×D7, D48D14, D2823D4

Smallest permutation representation of D2823D4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 91)(2 90)(3 89)(4 88)(5 87)(6 86)(7 85)(8 112)(9 111)(10 110)(11 109)(12 108)(13 107)(14 106)(15 105)(16 104)(17 103)(18 102)(19 101)(20 100)(21 99)(22 98)(23 97)(24 96)(25 95)(26 94)(27 93)(28 92)(29 64)(30 63)(31 62)(32 61)(33 60)(34 59)(35 58)(36 57)(37 84)(38 83)(39 82)(40 81)(41 80)(42 79)(43 78)(44 77)(45 76)(46 75)(47 74)(48 73)(49 72)(50 71)(51 70)(52 69)(53 68)(54 67)(55 66)(56 65)
(1 71 85 30)(2 72 86 31)(3 73 87 32)(4 74 88 33)(5 75 89 34)(6 76 90 35)(7 77 91 36)(8 78 92 37)(9 79 93 38)(10 80 94 39)(11 81 95 40)(12 82 96 41)(13 83 97 42)(14 84 98 43)(15 57 99 44)(16 58 100 45)(17 59 101 46)(18 60 102 47)(19 61 103 48)(20 62 104 49)(21 63 105 50)(22 64 106 51)(23 65 107 52)(24 66 108 53)(25 67 109 54)(26 68 110 55)(27 69 111 56)(28 70 112 29)
(29 70)(30 71)(31 72)(32 73)(33 74)(34 75)(35 76)(36 77)(37 78)(38 79)(39 80)(40 81)(41 82)(42 83)(43 84)(44 57)(45 58)(46 59)(47 60)(48 61)(49 62)(50 63)(51 64)(52 65)(53 66)(54 67)(55 68)(56 69)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,91)(2,90)(3,89)(4,88)(5,87)(6,86)(7,85)(8,112)(9,111)(10,110)(11,109)(12,108)(13,107)(14,106)(15,105)(16,104)(17,103)(18,102)(19,101)(20,100)(21,99)(22,98)(23,97)(24,96)(25,95)(26,94)(27,93)(28,92)(29,64)(30,63)(31,62)(32,61)(33,60)(34,59)(35,58)(36,57)(37,84)(38,83)(39,82)(40,81)(41,80)(42,79)(43,78)(44,77)(45,76)(46,75)(47,74)(48,73)(49,72)(50,71)(51,70)(52,69)(53,68)(54,67)(55,66)(56,65), (1,71,85,30)(2,72,86,31)(3,73,87,32)(4,74,88,33)(5,75,89,34)(6,76,90,35)(7,77,91,36)(8,78,92,37)(9,79,93,38)(10,80,94,39)(11,81,95,40)(12,82,96,41)(13,83,97,42)(14,84,98,43)(15,57,99,44)(16,58,100,45)(17,59,101,46)(18,60,102,47)(19,61,103,48)(20,62,104,49)(21,63,105,50)(22,64,106,51)(23,65,107,52)(24,66,108,53)(25,67,109,54)(26,68,110,55)(27,69,111,56)(28,70,112,29), (29,70)(30,71)(31,72)(32,73)(33,74)(34,75)(35,76)(36,77)(37,78)(38,79)(39,80)(40,81)(41,82)(42,83)(43,84)(44,57)(45,58)(46,59)(47,60)(48,61)(49,62)(50,63)(51,64)(52,65)(53,66)(54,67)(55,68)(56,69)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,91)(2,90)(3,89)(4,88)(5,87)(6,86)(7,85)(8,112)(9,111)(10,110)(11,109)(12,108)(13,107)(14,106)(15,105)(16,104)(17,103)(18,102)(19,101)(20,100)(21,99)(22,98)(23,97)(24,96)(25,95)(26,94)(27,93)(28,92)(29,64)(30,63)(31,62)(32,61)(33,60)(34,59)(35,58)(36,57)(37,84)(38,83)(39,82)(40,81)(41,80)(42,79)(43,78)(44,77)(45,76)(46,75)(47,74)(48,73)(49,72)(50,71)(51,70)(52,69)(53,68)(54,67)(55,66)(56,65), (1,71,85,30)(2,72,86,31)(3,73,87,32)(4,74,88,33)(5,75,89,34)(6,76,90,35)(7,77,91,36)(8,78,92,37)(9,79,93,38)(10,80,94,39)(11,81,95,40)(12,82,96,41)(13,83,97,42)(14,84,98,43)(15,57,99,44)(16,58,100,45)(17,59,101,46)(18,60,102,47)(19,61,103,48)(20,62,104,49)(21,63,105,50)(22,64,106,51)(23,65,107,52)(24,66,108,53)(25,67,109,54)(26,68,110,55)(27,69,111,56)(28,70,112,29), (29,70)(30,71)(31,72)(32,73)(33,74)(34,75)(35,76)(36,77)(37,78)(38,79)(39,80)(40,81)(41,82)(42,83)(43,84)(44,57)(45,58)(46,59)(47,60)(48,61)(49,62)(50,63)(51,64)(52,65)(53,66)(54,67)(55,68)(56,69) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,91),(2,90),(3,89),(4,88),(5,87),(6,86),(7,85),(8,112),(9,111),(10,110),(11,109),(12,108),(13,107),(14,106),(15,105),(16,104),(17,103),(18,102),(19,101),(20,100),(21,99),(22,98),(23,97),(24,96),(25,95),(26,94),(27,93),(28,92),(29,64),(30,63),(31,62),(32,61),(33,60),(34,59),(35,58),(36,57),(37,84),(38,83),(39,82),(40,81),(41,80),(42,79),(43,78),(44,77),(45,76),(46,75),(47,74),(48,73),(49,72),(50,71),(51,70),(52,69),(53,68),(54,67),(55,66),(56,65)], [(1,71,85,30),(2,72,86,31),(3,73,87,32),(4,74,88,33),(5,75,89,34),(6,76,90,35),(7,77,91,36),(8,78,92,37),(9,79,93,38),(10,80,94,39),(11,81,95,40),(12,82,96,41),(13,83,97,42),(14,84,98,43),(15,57,99,44),(16,58,100,45),(17,59,101,46),(18,60,102,47),(19,61,103,48),(20,62,104,49),(21,63,105,50),(22,64,106,51),(23,65,107,52),(24,66,108,53),(25,67,109,54),(26,68,110,55),(27,69,111,56),(28,70,112,29)], [(29,70),(30,71),(31,72),(32,73),(33,74),(34,75),(35,76),(36,77),(37,78),(38,79),(39,80),(40,81),(41,82),(42,83),(43,84),(44,57),(45,58),(46,59),(47,60),(48,61),(49,62),(50,63),(51,64),(52,65),(53,66),(54,67),(55,68),(56,69)]])

85 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K2L4A···4F4G4H4I4J4K4L7A7B7C14A···14I14J···14U28A···28L28M···28AJ
order12222222222224···444444477714···1414···1428···2828···28
size11112241414141428282···244282828282222···24···42···24···4

85 irreducible representations

dim111111111111222222222444
type++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D7C4○D4D14D14D14D14D14C4○D282+ 1+4D4×D7D48D14
kernelD2823D4C4×D28C4.D28D7×C22⋊C4D14⋊D4D14.5D4C28.48D4C287D4C23⋊D14D4×C28C22×D28C2×C4○D28D28C4×D4C2×C14C42C22⋊C4C4⋊C4C22×C4C2×D4C22C14C4C2
# reps1112221121114343636324166

Matrix representation of D2823D4 in GL4(𝔽29) generated by

9400
25800
00280
00028
,
10700
191900
00280
00028
,
91400
152000
00127
00128
,
1000
0100
0010
00128
G:=sub<GL(4,GF(29))| [9,25,0,0,4,8,0,0,0,0,28,0,0,0,0,28],[10,19,0,0,7,19,0,0,0,0,28,0,0,0,0,28],[9,15,0,0,14,20,0,0,0,0,1,1,0,0,27,28],[1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,28] >;

D2823D4 in GAP, Magma, Sage, TeX

D_{28}\rtimes_{23}D_4
% in TeX

G:=Group("D28:23D4");
// GroupNames label

G:=SmallGroup(448,1003);
// by ID

G=gap.SmallGroup(448,1003);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,387,100,675,570,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^28=b^2=c^4=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^14*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽