Extensions 1→N→G→Q→1 with N=C14×D8 and Q=C2

Direct product G=N×Q with N=C14×D8 and Q=C2
dρLabelID
D8×C2×C14224D8xC2xC14448,1352

Semidirect products G=N:Q with N=C14×D8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C14×D8)⋊1C2 = D8.D14φ: C2/C1C2 ⊆ Out C14×D81124(C14xD8):1C2448,681
(C14×D8)⋊2C2 = C56.23D4φ: C2/C1C2 ⊆ Out C14×D81124(C14xD8):2C2448,694
(C14×D8)⋊3C2 = D813D14φ: C2/C1C2 ⊆ Out C14×D81124(C14xD8):3C2448,1210
(C14×D8)⋊4C2 = C2×C7⋊D16φ: C2/C1C2 ⊆ Out C14×D8224(C14xD8):4C2448,680
(C14×D8)⋊5C2 = C565D4φ: C2/C1C2 ⊆ Out C14×D8224(C14xD8):5C2448,685
(C14×D8)⋊6C2 = C566D4φ: C2/C1C2 ⊆ Out C14×D8224(C14xD8):6C2448,691
(C14×D8)⋊7C2 = C2×D7×D8φ: C2/C1C2 ⊆ Out C14×D8112(C14xD8):7C2448,1207
(C14×D8)⋊8C2 = C2×D83D7φ: C2/C1C2 ⊆ Out C14×D8224(C14xD8):8C2448,1209
(C14×D8)⋊9C2 = C5611D4φ: C2/C1C2 ⊆ Out C14×D8224(C14xD8):9C2448,688
(C14×D8)⋊10C2 = C5612D4φ: C2/C1C2 ⊆ Out C14×D8224(C14xD8):10C2448,693
(C14×D8)⋊11C2 = C2×D8⋊D7φ: C2/C1C2 ⊆ Out C14×D8112(C14xD8):11C2448,1208
(C14×D8)⋊12C2 = Dic7⋊D8φ: C2/C1C2 ⊆ Out C14×D8224(C14xD8):12C2448,684
(C14×D8)⋊13C2 = D28⋊D4φ: C2/C1C2 ⊆ Out C14×D8112(C14xD8):13C2448,690
(C14×D8)⋊14C2 = Dic14⋊D4φ: C2/C1C2 ⊆ Out C14×D8224(C14xD8):14C2448,692
(C14×D8)⋊15C2 = C7×C22⋊D8φ: C2/C1C2 ⊆ Out C14×D8112(C14xD8):15C2448,855
(C14×D8)⋊16C2 = C7×D4⋊D4φ: C2/C1C2 ⊆ Out C14×D8224(C14xD8):16C2448,857
(C14×D8)⋊17C2 = C7×C4⋊D8φ: C2/C1C2 ⊆ Out C14×D8224(C14xD8):17C2448,867
(C14×D8)⋊18C2 = C7×C87D4φ: C2/C1C2 ⊆ Out C14×D8224(C14xD8):18C2448,874
(C14×D8)⋊19C2 = C7×C84D4φ: C2/C1C2 ⊆ Out C14×D8224(C14xD8):19C2448,901
(C14×D8)⋊20C2 = C14×D16φ: C2/C1C2 ⊆ Out C14×D8224(C14xD8):20C2448,913
(C14×D8)⋊21C2 = C7×C82D4φ: C2/C1C2 ⊆ Out C14×D8224(C14xD8):21C2448,877
(C14×D8)⋊22C2 = C7×D4.4D4φ: C2/C1C2 ⊆ Out C14×D81124(C14xD8):22C2448,880
(C14×D8)⋊23C2 = C7×C83D4φ: C2/C1C2 ⊆ Out C14×D8224(C14xD8):23C2448,904
(C14×D8)⋊24C2 = C7×C16⋊C22φ: C2/C1C2 ⊆ Out C14×D81124(C14xD8):24C2448,917
(C14×D8)⋊25C2 = C14×C8⋊C22φ: C2/C1C2 ⊆ Out C14×D8112(C14xD8):25C2448,1356
(C14×D8)⋊26C2 = C7×D4○D8φ: C2/C1C2 ⊆ Out C14×D81124(C14xD8):26C2448,1359
(C14×D8)⋊27C2 = C14×C4○D8φ: trivial image224(C14xD8):27C2448,1355

Non-split extensions G=N.Q with N=C14×D8 and Q=C2
extensionφ:Q→Out NdρLabelID
(C14×D8).1C2 = D8.Dic7φ: C2/C1C2 ⊆ Out C14×D81124(C14xD8).1C2448,120
(C14×D8).2C2 = C14.SD32φ: C2/C1C2 ⊆ Out C14×D8224(C14xD8).2C2448,119
(C14×D8).3C2 = C2×D8.D7φ: C2/C1C2 ⊆ Out C14×D8224(C14xD8).3C2448,682
(C14×D8).4C2 = D8×Dic7φ: C2/C1C2 ⊆ Out C14×D8224(C14xD8).4C2448,683
(C14×D8).5C2 = C56.22D4φ: C2/C1C2 ⊆ Out C14×D8224(C14xD8).5C2448,689
(C14×D8).6C2 = D8⋊Dic7φ: C2/C1C2 ⊆ Out C14×D8224(C14xD8).6C2448,686
(C14×D8).7C2 = C7×C2.D16φ: C2/C1C2 ⊆ Out C14×D8224(C14xD8).7C2448,161
(C14×D8).8C2 = (C2×D8).D7φ: C2/C1C2 ⊆ Out C14×D8224(C14xD8).8C2448,687
(C14×D8).9C2 = C7×D4.2D4φ: C2/C1C2 ⊆ Out C14×D8224(C14xD8).9C2448,871
(C14×D8).10C2 = C7×C8.12D4φ: C2/C1C2 ⊆ Out C14×D8224(C14xD8).10C2448,903
(C14×D8).11C2 = C14×SD32φ: C2/C1C2 ⊆ Out C14×D8224(C14xD8).11C2448,914
(C14×D8).12C2 = C7×M5(2)⋊C2φ: C2/C1C2 ⊆ Out C14×D81124(C14xD8).12C2448,165
(C14×D8).13C2 = C7×D8⋊C4φ: C2/C1C2 ⊆ Out C14×D8224(C14xD8).13C2448,850
(C14×D8).14C2 = D8×C28φ: trivial image224(C14xD8).14C2448,845

׿
×
𝔽