Copied to
clipboard

G = D8.Dic7order 448 = 26·7

2nd non-split extension by D8 of Dic7 acting via Dic7/C14=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C56.14D4, C28.11D8, D8.2Dic7, (C7×D8).2C4, (C2×D8).5D7, C56.25(C2×C4), (C14×D8).1C2, (C2×C8).49D14, C28.C81C2, C56.C42C2, C8.1(C2×Dic7), C4.14(D4⋊D7), (C2×C28).115D4, C73(M5(2)⋊C2), C8.24(C7⋊D4), (C2×C56).29C22, (C2×C14).30SD16, C4.2(C23.D7), C28.14(C22⋊C4), C2.7(D4⋊Dic7), C22.6(D4.D7), C14.27(D4⋊C4), (C2×C4).24(C7⋊D4), SmallGroup(448,120)

Series: Derived Chief Lower central Upper central

C1C56 — D8.Dic7
C1C7C14C28C2×C28C2×C56C56.C4 — D8.Dic7
C7C14C28C56 — D8.Dic7
C1C2C2×C4C2×C8C2×D8

Generators and relations for D8.Dic7
 G = < a,b,c,d | a8=b2=1, c14=a4, d2=a4c7, bab=a-1, ac=ca, dad-1=a3, cbc-1=a4b, dbd-1=a5b, dcd-1=c13 >

Subgroups: 228 in 62 conjugacy classes, 27 normal (23 characteristic)
C1, C2, C2, C4, C22, C22, C7, C8, C8, C2×C4, D4, C23, C14, C14, C16, C2×C8, M4(2), D8, D8, C2×D4, C28, C2×C14, C2×C14, C8.C4, M5(2), C2×D8, C7⋊C8, C56, C2×C28, C7×D4, C22×C14, M5(2)⋊C2, C7⋊C16, C4.Dic7, C2×C56, C7×D8, C7×D8, D4×C14, C28.C8, C56.C4, C14×D8, D8.Dic7
Quotients: C1, C2, C4, C22, C2×C4, D4, D7, C22⋊C4, D8, SD16, Dic7, D14, D4⋊C4, C2×Dic7, C7⋊D4, M5(2)⋊C2, D4⋊D7, D4.D7, C23.D7, D4⋊Dic7, D8.Dic7

Smallest permutation representation of D8.Dic7
On 112 points
Generators in S112
(1 35 8 42 15 49 22 56)(2 36 9 43 16 50 23 29)(3 37 10 44 17 51 24 30)(4 38 11 45 18 52 25 31)(5 39 12 46 19 53 26 32)(6 40 13 47 20 54 27 33)(7 41 14 48 21 55 28 34)(57 106 78 99 71 92 64 85)(58 107 79 100 72 93 65 86)(59 108 80 101 73 94 66 87)(60 109 81 102 74 95 67 88)(61 110 82 103 75 96 68 89)(62 111 83 104 76 97 69 90)(63 112 84 105 77 98 70 91)
(1 56)(2 43)(3 30)(4 45)(5 32)(6 47)(7 34)(8 49)(9 36)(10 51)(11 38)(12 53)(13 40)(14 55)(15 42)(16 29)(17 44)(18 31)(19 46)(20 33)(21 48)(22 35)(23 50)(24 37)(25 52)(26 39)(27 54)(28 41)(57 78)(58 65)(59 80)(60 67)(61 82)(62 69)(63 84)(64 71)(66 73)(68 75)(70 77)(72 79)(74 81)(76 83)(85 99)(87 101)(89 103)(91 105)(93 107)(95 109)(97 111)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 78 22 71 15 64 8 57)(2 63 23 84 16 77 9 70)(3 76 24 69 17 62 10 83)(4 61 25 82 18 75 11 68)(5 74 26 67 19 60 12 81)(6 59 27 80 20 73 13 66)(7 72 28 65 21 58 14 79)(29 98 50 91 43 112 36 105)(30 111 51 104 44 97 37 90)(31 96 52 89 45 110 38 103)(32 109 53 102 46 95 39 88)(33 94 54 87 47 108 40 101)(34 107 55 100 48 93 41 86)(35 92 56 85 49 106 42 99)

G:=sub<Sym(112)| (1,35,8,42,15,49,22,56)(2,36,9,43,16,50,23,29)(3,37,10,44,17,51,24,30)(4,38,11,45,18,52,25,31)(5,39,12,46,19,53,26,32)(6,40,13,47,20,54,27,33)(7,41,14,48,21,55,28,34)(57,106,78,99,71,92,64,85)(58,107,79,100,72,93,65,86)(59,108,80,101,73,94,66,87)(60,109,81,102,74,95,67,88)(61,110,82,103,75,96,68,89)(62,111,83,104,76,97,69,90)(63,112,84,105,77,98,70,91), (1,56)(2,43)(3,30)(4,45)(5,32)(6,47)(7,34)(8,49)(9,36)(10,51)(11,38)(12,53)(13,40)(14,55)(15,42)(16,29)(17,44)(18,31)(19,46)(20,33)(21,48)(22,35)(23,50)(24,37)(25,52)(26,39)(27,54)(28,41)(57,78)(58,65)(59,80)(60,67)(61,82)(62,69)(63,84)(64,71)(66,73)(68,75)(70,77)(72,79)(74,81)(76,83)(85,99)(87,101)(89,103)(91,105)(93,107)(95,109)(97,111), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,78,22,71,15,64,8,57)(2,63,23,84,16,77,9,70)(3,76,24,69,17,62,10,83)(4,61,25,82,18,75,11,68)(5,74,26,67,19,60,12,81)(6,59,27,80,20,73,13,66)(7,72,28,65,21,58,14,79)(29,98,50,91,43,112,36,105)(30,111,51,104,44,97,37,90)(31,96,52,89,45,110,38,103)(32,109,53,102,46,95,39,88)(33,94,54,87,47,108,40,101)(34,107,55,100,48,93,41,86)(35,92,56,85,49,106,42,99)>;

G:=Group( (1,35,8,42,15,49,22,56)(2,36,9,43,16,50,23,29)(3,37,10,44,17,51,24,30)(4,38,11,45,18,52,25,31)(5,39,12,46,19,53,26,32)(6,40,13,47,20,54,27,33)(7,41,14,48,21,55,28,34)(57,106,78,99,71,92,64,85)(58,107,79,100,72,93,65,86)(59,108,80,101,73,94,66,87)(60,109,81,102,74,95,67,88)(61,110,82,103,75,96,68,89)(62,111,83,104,76,97,69,90)(63,112,84,105,77,98,70,91), (1,56)(2,43)(3,30)(4,45)(5,32)(6,47)(7,34)(8,49)(9,36)(10,51)(11,38)(12,53)(13,40)(14,55)(15,42)(16,29)(17,44)(18,31)(19,46)(20,33)(21,48)(22,35)(23,50)(24,37)(25,52)(26,39)(27,54)(28,41)(57,78)(58,65)(59,80)(60,67)(61,82)(62,69)(63,84)(64,71)(66,73)(68,75)(70,77)(72,79)(74,81)(76,83)(85,99)(87,101)(89,103)(91,105)(93,107)(95,109)(97,111), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,78,22,71,15,64,8,57)(2,63,23,84,16,77,9,70)(3,76,24,69,17,62,10,83)(4,61,25,82,18,75,11,68)(5,74,26,67,19,60,12,81)(6,59,27,80,20,73,13,66)(7,72,28,65,21,58,14,79)(29,98,50,91,43,112,36,105)(30,111,51,104,44,97,37,90)(31,96,52,89,45,110,38,103)(32,109,53,102,46,95,39,88)(33,94,54,87,47,108,40,101)(34,107,55,100,48,93,41,86)(35,92,56,85,49,106,42,99) );

G=PermutationGroup([[(1,35,8,42,15,49,22,56),(2,36,9,43,16,50,23,29),(3,37,10,44,17,51,24,30),(4,38,11,45,18,52,25,31),(5,39,12,46,19,53,26,32),(6,40,13,47,20,54,27,33),(7,41,14,48,21,55,28,34),(57,106,78,99,71,92,64,85),(58,107,79,100,72,93,65,86),(59,108,80,101,73,94,66,87),(60,109,81,102,74,95,67,88),(61,110,82,103,75,96,68,89),(62,111,83,104,76,97,69,90),(63,112,84,105,77,98,70,91)], [(1,56),(2,43),(3,30),(4,45),(5,32),(6,47),(7,34),(8,49),(9,36),(10,51),(11,38),(12,53),(13,40),(14,55),(15,42),(16,29),(17,44),(18,31),(19,46),(20,33),(21,48),(22,35),(23,50),(24,37),(25,52),(26,39),(27,54),(28,41),(57,78),(58,65),(59,80),(60,67),(61,82),(62,69),(63,84),(64,71),(66,73),(68,75),(70,77),(72,79),(74,81),(76,83),(85,99),(87,101),(89,103),(91,105),(93,107),(95,109),(97,111)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,78,22,71,15,64,8,57),(2,63,23,84,16,77,9,70),(3,76,24,69,17,62,10,83),(4,61,25,82,18,75,11,68),(5,74,26,67,19,60,12,81),(6,59,27,80,20,73,13,66),(7,72,28,65,21,58,14,79),(29,98,50,91,43,112,36,105),(30,111,51,104,44,97,37,90),(31,96,52,89,45,110,38,103),(32,109,53,102,46,95,39,88),(33,94,54,87,47,108,40,101),(34,107,55,100,48,93,41,86),(35,92,56,85,49,106,42,99)]])

58 conjugacy classes

class 1 2A2B2C2D4A4B7A7B7C8A8B8C8D8E14A···14I14J···14U16A16B16C16D28A···28F56A···56L
order12222447778888814···1414···141616161628···2856···56
size112882222222456562···28···8282828284···44···4

58 irreducible representations

dim111112222222224444
type+++++++++-++-
imageC1C2C2C2C4D4D4D7D8SD16D14Dic7C7⋊D4C7⋊D4M5(2)⋊C2D4⋊D7D4.D7D8.Dic7
kernelD8.Dic7C28.C8C56.C4C14×D8C7×D8C56C2×C28C2×D8C28C2×C14C2×C8D8C8C2×C4C7C4C22C1
# reps1111411322366623312

Matrix representation of D8.Dic7 in GL4(𝔽113) generated by

625100
31000
16970107
6801951
,
625100
315100
8597180
000112
,
973200
971600
5527108
190110106
,
350480
0001
11133780
112100
G:=sub<GL(4,GF(113))| [62,31,16,68,51,0,97,0,0,0,0,19,0,0,107,51],[62,31,85,0,51,51,97,0,0,0,1,0,0,0,80,112],[97,97,5,19,32,16,52,0,0,0,7,110,0,0,108,106],[35,0,111,112,0,0,33,1,48,0,78,0,0,1,0,0] >;

D8.Dic7 in GAP, Magma, Sage, TeX

D_8.{\rm Dic}_7
% in TeX

G:=Group("D8.Dic7");
// GroupNames label

G:=SmallGroup(448,120);
// by ID

G=gap.SmallGroup(448,120);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,28,141,387,184,675,794,80,1684,851,102,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=1,c^14=a^4,d^2=a^4*c^7,b*a*b=a^-1,a*c=c*a,d*a*d^-1=a^3,c*b*c^-1=a^4*b,d*b*d^-1=a^5*b,d*c*d^-1=c^13>;
// generators/relations

׿
×
𝔽