Extensions 1→N→G→Q→1 with N=C2xDic7 and Q=C8

Direct product G=NxQ with N=C2xDic7 and Q=C8
dρLabelID
C2xC8xDic7448C2xC8xDic7448,632

Semidirect products G=N:Q with N=C2xDic7 and Q=C8
extensionφ:Q→Out NdρLabelID
(C2xDic7):C8 = (C2xDic7):C8φ: C8/C2C4 ⊆ Out C2xDic7224(C2xDic7):C8448,26
(C2xDic7):2C8 = (C2xC56):5C4φ: C8/C4C2 ⊆ Out C2xDic7448(C2xDic7):2C8448,107
(C2xDic7):3C8 = Dic7.5M4(2)φ: C8/C4C2 ⊆ Out C2xDic7224(C2xDic7):3C8448,252
(C2xDic7):4C8 = C2xDic7:C8φ: C8/C4C2 ⊆ Out C2xDic7448(C2xDic7):4C8448,633

Non-split extensions G=N.Q with N=C2xDic7 and Q=C8
extensionφ:Q→Out NdρLabelID
(C2xDic7).C8 = M5(2):D7φ: C8/C2C4 ⊆ Out C2xDic71124(C2xDic7).C8448,71
(C2xDic7).2C8 = Dic7:C16φ: C8/C4C2 ⊆ Out C2xDic7448(C2xDic7).2C8448,58
(C2xDic7).3C8 = C112:9C4φ: C8/C4C2 ⊆ Out C2xDic7448(C2xDic7).3C8448,59
(C2xDic7).4C8 = D14:C16φ: C8/C4C2 ⊆ Out C2xDic7224(C2xDic7).4C8448,64
(C2xDic7).5C8 = C2xC16:D7φ: C8/C4C2 ⊆ Out C2xDic7224(C2xDic7).5C8448,434
(C2xDic7).6C8 = D7xM5(2)φ: C8/C4C2 ⊆ Out C2xDic71124(C2xDic7).6C8448,440
(C2xDic7).7C8 = C16xDic7φ: trivial image448(C2xDic7).7C8448,57
(C2xDic7).8C8 = D7xC2xC16φ: trivial image224(C2xDic7).8C8448,433

׿
x
:
Z
F
o
wr
Q
<