Extensions 1→N→G→Q→1 with N=C2×C14 and Q=C2×C8

Direct product G=N×Q with N=C2×C14 and Q=C2×C8
dρLabelID
C23×C56448C2^3xC56448,1348

Semidirect products G=N:Q with N=C2×C14 and Q=C2×C8
extensionφ:Q→Aut NdρLabelID
(C2×C14)⋊1(C2×C8) = D7×C22⋊C8φ: C2×C8/C4C22 ⊆ Aut C2×C14112(C2xC14):1(C2xC8)448,258
(C2×C14)⋊2(C2×C8) = C7⋊D4⋊C8φ: C2×C8/C4C22 ⊆ Aut C2×C14224(C2xC14):2(C2xC8)448,259
(C2×C14)⋊3(C2×C8) = D4×C7⋊C8φ: C2×C8/C4C22 ⊆ Aut C2×C14224(C2xC14):3(C2xC8)448,544
(C2×C14)⋊4(C2×C8) = D4×C56φ: C2×C8/C8C2 ⊆ Aut C2×C14224(C2xC14):4(C2xC8)448,842
(C2×C14)⋊5(C2×C8) = C8×C7⋊D4φ: C2×C8/C8C2 ⊆ Aut C2×C14224(C2xC14):5(C2xC8)448,643
(C2×C14)⋊6(C2×C8) = D7×C22×C8φ: C2×C8/C8C2 ⊆ Aut C2×C14224(C2xC14):6(C2xC8)448,1189
(C2×C14)⋊7(C2×C8) = C14×C22⋊C8φ: C2×C8/C2×C4C2 ⊆ Aut C2×C14224(C2xC14):7(C2xC8)448,814
(C2×C14)⋊8(C2×C8) = C2×C28.55D4φ: C2×C8/C2×C4C2 ⊆ Aut C2×C14224(C2xC14):8(C2xC8)448,740
(C2×C14)⋊9(C2×C8) = C23×C7⋊C8φ: C2×C8/C2×C4C2 ⊆ Aut C2×C14448(C2xC14):9(C2xC8)448,1233

Non-split extensions G=N.Q with N=C2×C14 and Q=C2×C8
extensionφ:Q→Aut NdρLabelID
(C2×C14).1(C2×C8) = (C22×D7)⋊C8φ: C2×C8/C4C22 ⊆ Aut C2×C14112(C2xC14).1(C2xC8)448,25
(C2×C14).2(C2×C8) = (C2×Dic7)⋊C8φ: C2×C8/C4C22 ⊆ Aut C2×C14224(C2xC14).2(C2xC8)448,26
(C2×C14).3(C2×C8) = M5(2)⋊D7φ: C2×C8/C4C22 ⊆ Aut C2×C141124(C2xC14).3(C2xC8)448,71
(C2×C14).4(C2×C8) = Dic7.5M4(2)φ: C2×C8/C4C22 ⊆ Aut C2×C14224(C2xC14).4(C2xC8)448,252
(C2×C14).5(C2×C8) = D7×M5(2)φ: C2×C8/C4C22 ⊆ Aut C2×C141124(C2xC14).5(C2xC8)448,440
(C2×C14).6(C2×C8) = C16.12D14φ: C2×C8/C4C22 ⊆ Aut C2×C142244(C2xC14).6(C2xC8)448,441
(C2×C14).7(C2×C8) = C56.70C23φ: C2×C8/C4C22 ⊆ Aut C2×C142244(C2xC14).7(C2xC8)448,674
(C2×C14).8(C2×C8) = C7×D4○C16φ: C2×C8/C8C2 ⊆ Aut C2×C142242(C2xC14).8(C2xC8)448,912
(C2×C14).9(C2×C8) = C16×Dic7φ: C2×C8/C8C2 ⊆ Aut C2×C14448(C2xC14).9(C2xC8)448,57
(C2×C14).10(C2×C8) = Dic7⋊C16φ: C2×C8/C8C2 ⊆ Aut C2×C14448(C2xC14).10(C2xC8)448,58
(C2×C14).11(C2×C8) = C1129C4φ: C2×C8/C8C2 ⊆ Aut C2×C14448(C2xC14).11(C2xC8)448,59
(C2×C14).12(C2×C8) = D14⋊C16φ: C2×C8/C8C2 ⊆ Aut C2×C14224(C2xC14).12(C2xC8)448,64
(C2×C14).13(C2×C8) = (C2×C56)⋊5C4φ: C2×C8/C8C2 ⊆ Aut C2×C14448(C2xC14).13(C2xC8)448,107
(C2×C14).14(C2×C8) = D7×C2×C16φ: C2×C8/C8C2 ⊆ Aut C2×C14224(C2xC14).14(C2xC8)448,433
(C2×C14).15(C2×C8) = C2×C16⋊D7φ: C2×C8/C8C2 ⊆ Aut C2×C14224(C2xC14).15(C2xC8)448,434
(C2×C14).16(C2×C8) = D28.4C8φ: C2×C8/C8C2 ⊆ Aut C2×C142242(C2xC14).16(C2xC8)448,435
(C2×C14).17(C2×C8) = C2×C8×Dic7φ: C2×C8/C8C2 ⊆ Aut C2×C14448(C2xC14).17(C2xC8)448,632
(C2×C14).18(C2×C8) = C2×Dic7⋊C8φ: C2×C8/C8C2 ⊆ Aut C2×C14448(C2xC14).18(C2xC8)448,633
(C2×C14).19(C2×C8) = C2×D14⋊C8φ: C2×C8/C8C2 ⊆ Aut C2×C14224(C2xC14).19(C2xC8)448,642
(C2×C14).20(C2×C8) = C7×C23⋊C8φ: C2×C8/C2×C4C2 ⊆ Aut C2×C14112(C2xC14).20(C2xC8)448,127
(C2×C14).21(C2×C8) = C7×C22.M4(2)φ: C2×C8/C2×C4C2 ⊆ Aut C2×C14224(C2xC14).21(C2xC8)448,128
(C2×C14).22(C2×C8) = C7×C23.C8φ: C2×C8/C2×C4C2 ⊆ Aut C2×C141124(C2xC14).22(C2xC8)448,153
(C2×C14).23(C2×C8) = C7×C42.12C4φ: C2×C8/C2×C4C2 ⊆ Aut C2×C14224(C2xC14).23(C2xC8)448,839
(C2×C14).24(C2×C8) = C14×M5(2)φ: C2×C8/C2×C4C2 ⊆ Aut C2×C14224(C2xC14).24(C2xC8)448,911
(C2×C14).25(C2×C8) = C4×C7⋊C16φ: C2×C8/C2×C4C2 ⊆ Aut C2×C14448(C2xC14).25(C2xC8)448,17
(C2×C14).26(C2×C8) = C56.C8φ: C2×C8/C2×C4C2 ⊆ Aut C2×C14448(C2xC14).26(C2xC8)448,18
(C2×C14).27(C2×C8) = C28⋊C16φ: C2×C8/C2×C4C2 ⊆ Aut C2×C14448(C2xC14).27(C2xC8)448,19
(C2×C14).28(C2×C8) = (C2×C28)⋊3C8φ: C2×C8/C2×C4C2 ⊆ Aut C2×C14448(C2xC14).28(C2xC8)448,81
(C2×C14).29(C2×C8) = C24.Dic7φ: C2×C8/C2×C4C2 ⊆ Aut C2×C14112(C2xC14).29(C2xC8)448,82
(C2×C14).30(C2×C8) = (C2×C28)⋊C8φ: C2×C8/C2×C4C2 ⊆ Aut C2×C14224(C2xC14).30(C2xC8)448,85
(C2×C14).31(C2×C8) = C56.91D4φ: C2×C8/C2×C4C2 ⊆ Aut C2×C14224(C2xC14).31(C2xC8)448,106
(C2×C14).32(C2×C8) = C56.D4φ: C2×C8/C2×C4C2 ⊆ Aut C2×C141124(C2xC14).32(C2xC8)448,110
(C2×C14).33(C2×C8) = C2×C4×C7⋊C8φ: C2×C8/C2×C4C2 ⊆ Aut C2×C14448(C2xC14).33(C2xC8)448,454
(C2×C14).34(C2×C8) = C2×C28⋊C8φ: C2×C8/C2×C4C2 ⊆ Aut C2×C14448(C2xC14).34(C2xC8)448,457
(C2×C14).35(C2×C8) = C42.6Dic7φ: C2×C8/C2×C4C2 ⊆ Aut C2×C14224(C2xC14).35(C2xC8)448,459
(C2×C14).36(C2×C8) = C22×C7⋊C16φ: C2×C8/C2×C4C2 ⊆ Aut C2×C14448(C2xC14).36(C2xC8)448,630
(C2×C14).37(C2×C8) = C2×C28.C8φ: C2×C8/C2×C4C2 ⊆ Aut C2×C14224(C2xC14).37(C2xC8)448,631
(C2×C14).38(C2×C8) = C7×C22.7C42central extension (φ=1)448(C2xC14).38(C2xC8)448,140
(C2×C14).39(C2×C8) = C7×C165C4central extension (φ=1)448(C2xC14).39(C2xC8)448,150
(C2×C14).40(C2×C8) = C7×C22⋊C16central extension (φ=1)224(C2xC14).40(C2xC8)448,152
(C2×C14).41(C2×C8) = C7×C4⋊C16central extension (φ=1)448(C2xC14).41(C2xC8)448,167
(C2×C14).42(C2×C8) = C14×C4⋊C8central extension (φ=1)448(C2xC14).42(C2xC8)448,830

׿
×
𝔽