Extensions 1→N→G→Q→1 with N=C4⋊D28 and Q=C2

Direct product G=N×Q with N=C4⋊D28 and Q=C2
dρLabelID
C2×C4⋊D28224C2xC4:D28448,959

Semidirect products G=N:Q with N=C4⋊D28 and Q=C2
extensionφ:Q→Out NdρLabelID
C4⋊D281C2 = D4⋊D28φ: C2/C1C2 ⊆ Out C4⋊D28112C4:D28:1C2448,307
C4⋊D282C2 = D14⋊D8φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28:2C2448,309
C4⋊D283C2 = D43D28φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28:3C2448,315
C4⋊D284C2 = C7⋊C8⋊D4φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28:4C2448,316
C4⋊D285C2 = D284D4φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28:5C2448,345
C4⋊D286C2 = C567D4φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28:6C2448,399
C4⋊D287C2 = C87D28φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28:7C2448,417
C4⋊D288C2 = C14.2- 1+4φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28:8C2448,960
C4⋊D289C2 = C14.2+ 1+4φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28:9C2448,963
C4⋊D2810C2 = C14.112+ 1+4φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28:10C2448,967
C4⋊D2811C2 = C429D14φ: C2/C1C2 ⊆ Out C4⋊D28112C4:D28:11C2448,978
C4⋊D2812C2 = C42.95D14φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28:12C2448,983
C4⋊D2813C2 = C42.97D14φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28:13C2448,985
C4⋊D2814C2 = D4×D28φ: C2/C1C2 ⊆ Out C4⋊D28112C4:D28:14C2448,1002
C4⋊D2815C2 = D45D28φ: C2/C1C2 ⊆ Out C4⋊D28112C4:D28:15C2448,1007
C4⋊D2816C2 = C42.116D14φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28:16C2448,1015
C4⋊D2817C2 = Q85D28φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28:17C2448,1029
C4⋊D2818C2 = Q86D28φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28:18C2448,1030
C4⋊D2819C2 = Dic1420D4φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28:19C2448,1052
C4⋊D2820C2 = D7×C4⋊D4φ: C2/C1C2 ⊆ Out C4⋊D28112C4:D28:20C2448,1057
C4⋊D2821C2 = C14.382+ 1+4φ: C2/C1C2 ⊆ Out C4⋊D28112C4:D28:21C2448,1060
C4⋊D2822C2 = D2819D4φ: C2/C1C2 ⊆ Out C4⋊D28112C4:D28:22C2448,1062
C4⋊D2823C2 = C4⋊C426D14φ: C2/C1C2 ⊆ Out C4⋊D28112C4:D28:23C2448,1080
C4⋊D2824C2 = C14.172- 1+4φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28:24C2448,1082
C4⋊D2825C2 = D2821D4φ: C2/C1C2 ⊆ Out C4⋊D28112C4:D28:25C2448,1083
C4⋊D2826C2 = Dic1422D4φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28:26C2448,1086
C4⋊D2827C2 = C14.562+ 1+4φ: C2/C1C2 ⊆ Out C4⋊D28112C4:D28:27C2448,1097
C4⋊D2828C2 = C14.262- 1+4φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28:28C2448,1100
C4⋊D2829C2 = C14.1202+ 1+4φ: C2/C1C2 ⊆ Out C4⋊D28112C4:D28:29C2448,1106
C4⋊D2830C2 = C14.1212+ 1+4φ: C2/C1C2 ⊆ Out C4⋊D28112C4:D28:30C2448,1107
C4⋊D2831C2 = C14.662+ 1+4φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28:31C2448,1116
C4⋊D2832C2 = C14.682+ 1+4φ: C2/C1C2 ⊆ Out C4⋊D28112C4:D28:32C2448,1119
C4⋊D2833C2 = C42.153D14φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28:33C2448,1148
C4⋊D2834C2 = C42.156D14φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28:34C2448,1151
C4⋊D2835C2 = C42.158D14φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28:35C2448,1153
C4⋊D2836C2 = C4223D14φ: C2/C1C2 ⊆ Out C4⋊D28112C4:D28:36C2448,1157
C4⋊D2837C2 = C42.163D14φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28:37C2448,1162
C4⋊D2838C2 = C4225D14φ: C2/C1C2 ⊆ Out C4⋊D28112C4:D28:38C2448,1164
C4⋊D2839C2 = C42.240D14φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28:39C2448,1178
C4⋊D2840C2 = D2812D4φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28:40C2448,1179
C4⋊D2841C2 = C42.179D14φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28:41C2448,1187
C4⋊D2842C2 = C428D14φ: trivial image112C4:D28:42C2448,977
C4⋊D2843C2 = C42.228D14φ: trivial image224C4:D28:43C2448,1001

Non-split extensions G=N.Q with N=C4⋊D28 and Q=C2
extensionφ:Q→Out NdρLabelID
C4⋊D28.1C2 = Q82D28φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28.1C2448,340
C4⋊D28.2C2 = D142SD16φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28.2C2448,341
C4⋊D28.3C2 = C7⋊(C8⋊D4)φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28.3C2448,346
C4⋊D28.4C2 = D14.4SD16φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28.4C2448,397
C4⋊D28.5C2 = C88D28φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28.5C2448,398
C4⋊D28.6C2 = C4.Q8⋊D7φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28.6C2448,400
C4⋊D28.7C2 = D14.5D8φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28.7C2448,416
C4⋊D28.8C2 = C2.D8⋊D7φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28.8C2448,419
C4⋊D28.9C2 = C83D28φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28.9C2448,420
C4⋊D28.10C2 = C42.133D14φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28.10C2448,1035
C4⋊D28.11C2 = C42.237D14φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28.11C2448,1144
C4⋊D28.12C2 = C42.150D14φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28.12C2448,1145
C4⋊D28.13C2 = C42.178D14φ: C2/C1C2 ⊆ Out C4⋊D28224C4:D28.13C2448,1186
C4⋊D28.14C2 = C42.131D14φ: trivial image224C4:D28.14C2448,1033

׿
×
𝔽