Copied to
clipboard

G = C14.382+ 1+4order 448 = 26·7

38th non-split extension by C14 of 2+ 1+4 acting via 2+ 1+4/C2×D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C14.382+ 1+4, (C4×D7)⋊1D4, C4⋊C422D14, (C2×D4)⋊7D14, C4⋊D410D7, C4.183(D4×D7), C23⋊D149C2, C28⋊D416C2, C287D433C2, C282D418C2, C4⋊D2821C2, C22⋊C410D14, D14.41(C2×D4), C28.227(C2×D4), (C22×C4)⋊16D14, Dic7.6(C2×D4), C22⋊D2812C2, D14⋊C417C22, (D4×C14)⋊12C22, (C2×D28)⋊23C22, C4⋊Dic731C22, C14.66(C22×D4), (C2×C28).173C23, (C2×C14).151C24, (C22×C28)⋊20C22, C73(C22.29C24), (C4×Dic7)⋊21C22, C2.40(D46D14), C2.27(D48D14), C23.D723C22, Dic7.D418C2, (C2×Dic14)⋊54C22, (C22×C14).20C23, (C2×Dic7).72C23, (C23×D7).46C22, C23.112(C22×D7), C22.172(C23×D7), (C22×D7).186C23, (C2×D4×D7)⋊10C2, C2.39(C2×D4×D7), (C2×C4×D7)⋊13C22, C4⋊C47D720C2, (C2×C4○D28)⋊20C2, (C7×C4⋊D4)⋊13C2, (C7×C4⋊C4)⋊10C22, (C2×C7⋊D4)⋊14C22, (C2×C4).38(C22×D7), (C7×C22⋊C4)⋊12C22, SmallGroup(448,1060)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C14.382+ 1+4
C1C7C14C2×C14C22×D7C23×D7C2×D4×D7 — C14.382+ 1+4
C7C2×C14 — C14.382+ 1+4
C1C22C4⋊D4

Generators and relations for C14.382+ 1+4
 G = < a,b,c,d,e | a14=b4=c2=e2=1, d2=b2, ab=ba, ac=ca, dad-1=a-1, ae=ea, cbc=b-1, bd=db, be=eb, dcd-1=ece=a7c, ede=b2d >

Subgroups: 1996 in 334 conjugacy classes, 103 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, D7, C14, C14, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, Dic7, Dic7, C28, C28, D14, D14, C2×C14, C2×C14, C42⋊C2, C22≀C2, C4⋊D4, C4⋊D4, C4.4D4, C41D4, C22×D4, C2×C4○D4, Dic14, C4×D7, C4×D7, D28, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C2×C28, C7×D4, C22×D7, C22×D7, C22×D7, C22×C14, C22×C14, C22.29C24, C4×Dic7, C4⋊Dic7, D14⋊C4, C23.D7, C7×C22⋊C4, C7×C4⋊C4, C2×Dic14, C2×C4×D7, C2×D28, C2×D28, C4○D28, D4×D7, C2×C7⋊D4, C2×C7⋊D4, C22×C28, D4×C14, D4×C14, C23×D7, C22⋊D28, Dic7.D4, C4⋊C47D7, C4⋊D28, C287D4, C23⋊D14, C282D4, C28⋊D4, C7×C4⋊D4, C2×C4○D28, C2×D4×D7, C14.382+ 1+4
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C24, D14, C22×D4, 2+ 1+4, C22×D7, C22.29C24, D4×D7, C23×D7, C2×D4×D7, D46D14, D48D14, C14.382+ 1+4

Smallest permutation representation of C14.382+ 1+4
On 112 points
Generators in S112
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 77 21 57)(2 78 22 58)(3 79 23 59)(4 80 24 60)(5 81 25 61)(6 82 26 62)(7 83 27 63)(8 84 28 64)(9 71 15 65)(10 72 16 66)(11 73 17 67)(12 74 18 68)(13 75 19 69)(14 76 20 70)(29 106 48 97)(30 107 49 98)(31 108 50 85)(32 109 51 86)(33 110 52 87)(34 111 53 88)(35 112 54 89)(36 99 55 90)(37 100 56 91)(38 101 43 92)(39 102 44 93)(40 103 45 94)(41 104 46 95)(42 105 47 96)
(1 57)(2 58)(3 59)(4 60)(5 61)(6 62)(7 63)(8 64)(9 65)(10 66)(11 67)(12 68)(13 69)(14 70)(15 71)(16 72)(17 73)(18 74)(19 75)(20 76)(21 77)(22 78)(23 79)(24 80)(25 81)(26 82)(27 83)(28 84)(29 90)(30 91)(31 92)(32 93)(33 94)(34 95)(35 96)(36 97)(37 98)(38 85)(39 86)(40 87)(41 88)(42 89)(43 108)(44 109)(45 110)(46 111)(47 112)(48 99)(49 100)(50 101)(51 102)(52 103)(53 104)(54 105)(55 106)(56 107)
(1 45 21 40)(2 44 22 39)(3 43 23 38)(4 56 24 37)(5 55 25 36)(6 54 26 35)(7 53 27 34)(8 52 28 33)(9 51 15 32)(10 50 16 31)(11 49 17 30)(12 48 18 29)(13 47 19 42)(14 46 20 41)(57 103 77 94)(58 102 78 93)(59 101 79 92)(60 100 80 91)(61 99 81 90)(62 112 82 89)(63 111 83 88)(64 110 84 87)(65 109 71 86)(66 108 72 85)(67 107 73 98)(68 106 74 97)(69 105 75 96)(70 104 76 95)
(1 33)(2 34)(3 35)(4 36)(5 37)(6 38)(7 39)(8 40)(9 41)(10 42)(11 29)(12 30)(13 31)(14 32)(15 46)(16 47)(17 48)(18 49)(19 50)(20 51)(21 52)(22 53)(23 54)(24 55)(25 56)(26 43)(27 44)(28 45)(57 87)(58 88)(59 89)(60 90)(61 91)(62 92)(63 93)(64 94)(65 95)(66 96)(67 97)(68 98)(69 85)(70 86)(71 104)(72 105)(73 106)(74 107)(75 108)(76 109)(77 110)(78 111)(79 112)(80 99)(81 100)(82 101)(83 102)(84 103)

G:=sub<Sym(112)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,77,21,57)(2,78,22,58)(3,79,23,59)(4,80,24,60)(5,81,25,61)(6,82,26,62)(7,83,27,63)(8,84,28,64)(9,71,15,65)(10,72,16,66)(11,73,17,67)(12,74,18,68)(13,75,19,69)(14,76,20,70)(29,106,48,97)(30,107,49,98)(31,108,50,85)(32,109,51,86)(33,110,52,87)(34,111,53,88)(35,112,54,89)(36,99,55,90)(37,100,56,91)(38,101,43,92)(39,102,44,93)(40,103,45,94)(41,104,46,95)(42,105,47,96), (1,57)(2,58)(3,59)(4,60)(5,61)(6,62)(7,63)(8,64)(9,65)(10,66)(11,67)(12,68)(13,69)(14,70)(15,71)(16,72)(17,73)(18,74)(19,75)(20,76)(21,77)(22,78)(23,79)(24,80)(25,81)(26,82)(27,83)(28,84)(29,90)(30,91)(31,92)(32,93)(33,94)(34,95)(35,96)(36,97)(37,98)(38,85)(39,86)(40,87)(41,88)(42,89)(43,108)(44,109)(45,110)(46,111)(47,112)(48,99)(49,100)(50,101)(51,102)(52,103)(53,104)(54,105)(55,106)(56,107), (1,45,21,40)(2,44,22,39)(3,43,23,38)(4,56,24,37)(5,55,25,36)(6,54,26,35)(7,53,27,34)(8,52,28,33)(9,51,15,32)(10,50,16,31)(11,49,17,30)(12,48,18,29)(13,47,19,42)(14,46,20,41)(57,103,77,94)(58,102,78,93)(59,101,79,92)(60,100,80,91)(61,99,81,90)(62,112,82,89)(63,111,83,88)(64,110,84,87)(65,109,71,86)(66,108,72,85)(67,107,73,98)(68,106,74,97)(69,105,75,96)(70,104,76,95), (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,41)(10,42)(11,29)(12,30)(13,31)(14,32)(15,46)(16,47)(17,48)(18,49)(19,50)(20,51)(21,52)(22,53)(23,54)(24,55)(25,56)(26,43)(27,44)(28,45)(57,87)(58,88)(59,89)(60,90)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,97)(68,98)(69,85)(70,86)(71,104)(72,105)(73,106)(74,107)(75,108)(76,109)(77,110)(78,111)(79,112)(80,99)(81,100)(82,101)(83,102)(84,103)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,77,21,57)(2,78,22,58)(3,79,23,59)(4,80,24,60)(5,81,25,61)(6,82,26,62)(7,83,27,63)(8,84,28,64)(9,71,15,65)(10,72,16,66)(11,73,17,67)(12,74,18,68)(13,75,19,69)(14,76,20,70)(29,106,48,97)(30,107,49,98)(31,108,50,85)(32,109,51,86)(33,110,52,87)(34,111,53,88)(35,112,54,89)(36,99,55,90)(37,100,56,91)(38,101,43,92)(39,102,44,93)(40,103,45,94)(41,104,46,95)(42,105,47,96), (1,57)(2,58)(3,59)(4,60)(5,61)(6,62)(7,63)(8,64)(9,65)(10,66)(11,67)(12,68)(13,69)(14,70)(15,71)(16,72)(17,73)(18,74)(19,75)(20,76)(21,77)(22,78)(23,79)(24,80)(25,81)(26,82)(27,83)(28,84)(29,90)(30,91)(31,92)(32,93)(33,94)(34,95)(35,96)(36,97)(37,98)(38,85)(39,86)(40,87)(41,88)(42,89)(43,108)(44,109)(45,110)(46,111)(47,112)(48,99)(49,100)(50,101)(51,102)(52,103)(53,104)(54,105)(55,106)(56,107), (1,45,21,40)(2,44,22,39)(3,43,23,38)(4,56,24,37)(5,55,25,36)(6,54,26,35)(7,53,27,34)(8,52,28,33)(9,51,15,32)(10,50,16,31)(11,49,17,30)(12,48,18,29)(13,47,19,42)(14,46,20,41)(57,103,77,94)(58,102,78,93)(59,101,79,92)(60,100,80,91)(61,99,81,90)(62,112,82,89)(63,111,83,88)(64,110,84,87)(65,109,71,86)(66,108,72,85)(67,107,73,98)(68,106,74,97)(69,105,75,96)(70,104,76,95), (1,33)(2,34)(3,35)(4,36)(5,37)(6,38)(7,39)(8,40)(9,41)(10,42)(11,29)(12,30)(13,31)(14,32)(15,46)(16,47)(17,48)(18,49)(19,50)(20,51)(21,52)(22,53)(23,54)(24,55)(25,56)(26,43)(27,44)(28,45)(57,87)(58,88)(59,89)(60,90)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,97)(68,98)(69,85)(70,86)(71,104)(72,105)(73,106)(74,107)(75,108)(76,109)(77,110)(78,111)(79,112)(80,99)(81,100)(82,101)(83,102)(84,103) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,77,21,57),(2,78,22,58),(3,79,23,59),(4,80,24,60),(5,81,25,61),(6,82,26,62),(7,83,27,63),(8,84,28,64),(9,71,15,65),(10,72,16,66),(11,73,17,67),(12,74,18,68),(13,75,19,69),(14,76,20,70),(29,106,48,97),(30,107,49,98),(31,108,50,85),(32,109,51,86),(33,110,52,87),(34,111,53,88),(35,112,54,89),(36,99,55,90),(37,100,56,91),(38,101,43,92),(39,102,44,93),(40,103,45,94),(41,104,46,95),(42,105,47,96)], [(1,57),(2,58),(3,59),(4,60),(5,61),(6,62),(7,63),(8,64),(9,65),(10,66),(11,67),(12,68),(13,69),(14,70),(15,71),(16,72),(17,73),(18,74),(19,75),(20,76),(21,77),(22,78),(23,79),(24,80),(25,81),(26,82),(27,83),(28,84),(29,90),(30,91),(31,92),(32,93),(33,94),(34,95),(35,96),(36,97),(37,98),(38,85),(39,86),(40,87),(41,88),(42,89),(43,108),(44,109),(45,110),(46,111),(47,112),(48,99),(49,100),(50,101),(51,102),(52,103),(53,104),(54,105),(55,106),(56,107)], [(1,45,21,40),(2,44,22,39),(3,43,23,38),(4,56,24,37),(5,55,25,36),(6,54,26,35),(7,53,27,34),(8,52,28,33),(9,51,15,32),(10,50,16,31),(11,49,17,30),(12,48,18,29),(13,47,19,42),(14,46,20,41),(57,103,77,94),(58,102,78,93),(59,101,79,92),(60,100,80,91),(61,99,81,90),(62,112,82,89),(63,111,83,88),(64,110,84,87),(65,109,71,86),(66,108,72,85),(67,107,73,98),(68,106,74,97),(69,105,75,96),(70,104,76,95)], [(1,33),(2,34),(3,35),(4,36),(5,37),(6,38),(7,39),(8,40),(9,41),(10,42),(11,29),(12,30),(13,31),(14,32),(15,46),(16,47),(17,48),(18,49),(19,50),(20,51),(21,52),(22,53),(23,54),(24,55),(25,56),(26,43),(27,44),(28,45),(57,87),(58,88),(59,89),(60,90),(61,91),(62,92),(63,93),(64,94),(65,95),(66,96),(67,97),(68,98),(69,85),(70,86),(71,104),(72,105),(73,106),(74,107),(75,108),(76,109),(77,110),(78,111),(79,112),(80,99),(81,100),(82,101),(83,102),(84,103)]])

64 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K4A4B4C4D4E4F4G4H4I4J7A7B7C14A···14I14J···14O14P···14U28A···28L28M···28R
order122222222222444444444477714···1414···1414···1428···2828···28
size111144414142828282244414142828282222···24···48···84···48···8

64 irreducible representations

dim1111111111112222224444
type+++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D7D14D14D14D142+ 1+4D4×D7D46D14D48D14
kernelC14.382+ 1+4C22⋊D28Dic7.D4C4⋊C47D7C4⋊D28C287D4C23⋊D14C282D4C28⋊D4C7×C4⋊D4C2×C4○D28C2×D4×D7C4×D7C4⋊D4C22⋊C4C4⋊C4C22×C4C2×D4C14C4C2C2
# reps1221112121114363392666

Matrix representation of C14.382+ 1+4 in GL6(𝔽29)

2800000
0280000
00252500
0041100
00002525
0000411
,
100000
010000
000010
000001
0028000
0002800
,
100000
1280000
000010
000001
001000
000100
,
1270000
0280000
00182700
0031100
00001827
0000311
,
1270000
0280000
00182700
0021100
00001827
0000211

G:=sub<GL(6,GF(29))| [28,0,0,0,0,0,0,28,0,0,0,0,0,0,25,4,0,0,0,0,25,11,0,0,0,0,0,0,25,4,0,0,0,0,25,11],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,1,0,0,0,0,0,0,1,0,0],[1,1,0,0,0,0,0,28,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[1,0,0,0,0,0,27,28,0,0,0,0,0,0,18,3,0,0,0,0,27,11,0,0,0,0,0,0,18,3,0,0,0,0,27,11],[1,0,0,0,0,0,27,28,0,0,0,0,0,0,18,2,0,0,0,0,27,11,0,0,0,0,0,0,18,2,0,0,0,0,27,11] >;

C14.382+ 1+4 in GAP, Magma, Sage, TeX

C_{14}._{38}2_+^{1+4}
% in TeX

G:=Group("C14.38ES+(2,2)");
// GroupNames label

G:=SmallGroup(448,1060);
// by ID

G=gap.SmallGroup(448,1060);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,219,675,570,297,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^14=b^4=c^2=e^2=1,d^2=b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,d*c*d^-1=e*c*e=a^7*c,e*d*e=b^2*d>;
// generators/relations

׿
×
𝔽