# Extensions 1→N→G→Q→1 with N=C3×D13 and Q=C6

Direct product G=N×Q with N=C3×D13 and Q=C6
dρLabelID
C3×C6×D13234C3xC6xD13468,50

Semidirect products G=N:Q with N=C3×D13 and Q=C6
extensionφ:Q→Out NdρLabelID
(C3×D13)⋊C6 = S3×C13⋊C6φ: C6/C1C6 ⊆ Out C3×D133912+(C3xD13):C6468,31
(C3×D13)⋊2C6 = C6×C13⋊C6φ: C6/C2C3 ⊆ Out C3×D13786(C3xD13):2C6468,33
(C3×D13)⋊3C6 = C3×S3×D13φ: C6/C3C2 ⊆ Out C3×D13784(C3xD13):3C6468,42

Non-split extensions G=N.Q with N=C3×D13 and Q=C6
extensionφ:Q→Out NdρLabelID
(C3×D13).1C6 = C3⋊F13φ: C6/C1C6 ⊆ Out C3×D133912(C3xD13).1C6468,30
(C3×D13).2C6 = C13⋊C36φ: C6/C1C6 ⊆ Out C3×D1311712(C3xD13).2C6468,7
(C3×D13).3C6 = C3×F13φ: C6/C1C6 ⊆ Out C3×D133912(C3xD13).3C6468,29
(C3×D13).4C6 = C2×C13⋊C18φ: C6/C2C3 ⊆ Out C3×D132346(C3xD13).4C6468,8
(C3×D13).5C6 = C3×C39⋊C4φ: C6/C3C2 ⊆ Out C3×D13784(C3xD13).5C6468,37
(C3×D13).6C6 = C9×C13⋊C4φ: C6/C3C2 ⊆ Out C3×D131174(C3xD13).6C6468,9
(C3×D13).7C6 = C32×C13⋊C4φ: C6/C3C2 ⊆ Out C3×D13117(C3xD13).7C6468,36
(C3×D13).8C6 = C18×D13φ: trivial image2342(C3xD13).8C6468,15

׿
×
𝔽