Extensions 1→N→G→Q→1 with N=C3 and Q=Dic5.Q8

Direct product G=N×Q with N=C3 and Q=Dic5.Q8
dρLabelID
C3×Dic5.Q8480C3xDic5.Q8480,682

Semidirect products G=N:Q with N=C3 and Q=Dic5.Q8
extensionφ:Q→Aut NdρLabelID
C31(Dic5.Q8) = Dic5.7Dic6φ: Dic5.Q8/C4×Dic5C2 ⊆ Aut C3480C3:1(Dic5.Q8)480,454
C32(Dic5.Q8) = Dic5.1Dic6φ: Dic5.Q8/C10.D4C2 ⊆ Aut C3480C3:2(Dic5.Q8)480,410
C33(Dic5.Q8) = Dic5.2Dic6φ: Dic5.Q8/C10.D4C2 ⊆ Aut C3480C3:3(Dic5.Q8)480,411
C34(Dic5.Q8) = Dic15.Q8φ: Dic5.Q8/C10.D4C2 ⊆ Aut C3480C3:4(Dic5.Q8)480,412
C35(Dic5.Q8) = Dic15.4Q8φ: Dic5.Q8/C10.D4C2 ⊆ Aut C3480C3:5(Dic5.Q8)480,458
C36(Dic5.Q8) = Dic15.2Q8φ: Dic5.Q8/C4⋊Dic5C2 ⊆ Aut C3480C3:6(Dic5.Q8)480,415
C37(Dic5.Q8) = Dic15.3Q8φ: Dic5.Q8/C5×C4⋊C4C2 ⊆ Aut C3480C3:7(Dic5.Q8)480,854


׿
×
𝔽