metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: C4⋊Dic5, C20⋊3C4, C2.1D20, C10.4D4, C10.2Q8, C2.2Dic10, C22.5D10, C5⋊3(C4⋊C4), (C2×C4).3D5, (C2×C20).3C2, C10.15(C2×C4), C2.4(C2×Dic5), (C2×C10).5C22, (C2×Dic5).2C2, SmallGroup(80,13)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C4⋊Dic5
G = < a,b,c | a4=b10=1, c2=b5, ab=ba, cac-1=a-1, cbc-1=b-1 >
Character table of C4⋊Dic5
class | 1 | 2A | 2B | 2C | 4A | 4B | 4C | 4D | 4E | 4F | 5A | 5B | 10A | 10B | 10C | 10D | 10E | 10F | 20A | 20B | 20C | 20D | 20E | 20F | 20G | 20H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 10 | 10 | 10 | 10 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | -1 | 1 | i | -i | -i | i | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ6 | 1 | -1 | -1 | 1 | 1 | -1 | -i | -i | i | i | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ7 | 1 | -1 | -1 | 1 | 1 | -1 | i | i | -i | -i | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 4 |
ρ8 | 1 | -1 | -1 | 1 | -1 | 1 | -i | i | i | -i | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ9 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ11 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ12 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ13 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | -ζ4ζ53+ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | orthogonal lifted from D20 |
ρ15 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | ζ43ζ54-ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | orthogonal lifted from D20 |
ρ16 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | -ζ43ζ54+ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | ζ43ζ54-ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | orthogonal lifted from D20 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | ζ4ζ53-ζ4ζ52 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | orthogonal lifted from D20 |
ρ18 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ19 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1+√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | symplectic lifted from Dic5, Schur index 2 |
ρ20 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1+√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | symplectic lifted from Dic5, Schur index 2 |
ρ21 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1-√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | symplectic lifted from Dic5, Schur index 2 |
ρ22 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1-√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | symplectic lifted from Dic5, Schur index 2 |
ρ23 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | ζ4ζ53-ζ4ζ52 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | symplectic lifted from Dic10, Schur index 2 |
ρ24 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | ζ43ζ54-ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | symplectic lifted from Dic10, Schur index 2 |
ρ25 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | -ζ43ζ54+ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | ζ43ζ54-ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | symplectic lifted from Dic10, Schur index 2 |
ρ26 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | -ζ4ζ53+ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | ζ4ζ53-ζ4ζ52 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | symplectic lifted from Dic10, Schur index 2 |
(1 45 28 34)(2 46 29 35)(3 47 30 36)(4 48 21 37)(5 49 22 38)(6 50 23 39)(7 41 24 40)(8 42 25 31)(9 43 26 32)(10 44 27 33)(11 51 71 62)(12 52 72 63)(13 53 73 64)(14 54 74 65)(15 55 75 66)(16 56 76 67)(17 57 77 68)(18 58 78 69)(19 59 79 70)(20 60 80 61)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 51 6 56)(2 60 7 55)(3 59 8 54)(4 58 9 53)(5 57 10 52)(11 50 16 45)(12 49 17 44)(13 48 18 43)(14 47 19 42)(15 46 20 41)(21 69 26 64)(22 68 27 63)(23 67 28 62)(24 66 29 61)(25 65 30 70)(31 74 36 79)(32 73 37 78)(33 72 38 77)(34 71 39 76)(35 80 40 75)
G:=sub<Sym(80)| (1,45,28,34)(2,46,29,35)(3,47,30,36)(4,48,21,37)(5,49,22,38)(6,50,23,39)(7,41,24,40)(8,42,25,31)(9,43,26,32)(10,44,27,33)(11,51,71,62)(12,52,72,63)(13,53,73,64)(14,54,74,65)(15,55,75,66)(16,56,76,67)(17,57,77,68)(18,58,78,69)(19,59,79,70)(20,60,80,61), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,51,6,56)(2,60,7,55)(3,59,8,54)(4,58,9,53)(5,57,10,52)(11,50,16,45)(12,49,17,44)(13,48,18,43)(14,47,19,42)(15,46,20,41)(21,69,26,64)(22,68,27,63)(23,67,28,62)(24,66,29,61)(25,65,30,70)(31,74,36,79)(32,73,37,78)(33,72,38,77)(34,71,39,76)(35,80,40,75)>;
G:=Group( (1,45,28,34)(2,46,29,35)(3,47,30,36)(4,48,21,37)(5,49,22,38)(6,50,23,39)(7,41,24,40)(8,42,25,31)(9,43,26,32)(10,44,27,33)(11,51,71,62)(12,52,72,63)(13,53,73,64)(14,54,74,65)(15,55,75,66)(16,56,76,67)(17,57,77,68)(18,58,78,69)(19,59,79,70)(20,60,80,61), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,51,6,56)(2,60,7,55)(3,59,8,54)(4,58,9,53)(5,57,10,52)(11,50,16,45)(12,49,17,44)(13,48,18,43)(14,47,19,42)(15,46,20,41)(21,69,26,64)(22,68,27,63)(23,67,28,62)(24,66,29,61)(25,65,30,70)(31,74,36,79)(32,73,37,78)(33,72,38,77)(34,71,39,76)(35,80,40,75) );
G=PermutationGroup([[(1,45,28,34),(2,46,29,35),(3,47,30,36),(4,48,21,37),(5,49,22,38),(6,50,23,39),(7,41,24,40),(8,42,25,31),(9,43,26,32),(10,44,27,33),(11,51,71,62),(12,52,72,63),(13,53,73,64),(14,54,74,65),(15,55,75,66),(16,56,76,67),(17,57,77,68),(18,58,78,69),(19,59,79,70),(20,60,80,61)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,51,6,56),(2,60,7,55),(3,59,8,54),(4,58,9,53),(5,57,10,52),(11,50,16,45),(12,49,17,44),(13,48,18,43),(14,47,19,42),(15,46,20,41),(21,69,26,64),(22,68,27,63),(23,67,28,62),(24,66,29,61),(25,65,30,70),(31,74,36,79),(32,73,37,78),(33,72,38,77),(34,71,39,76),(35,80,40,75)]])
C4⋊Dic5 is a maximal subgroup of
C10.D8 C20.Q8 C20.44D4 C40⋊6C4 C40⋊5C4 D20⋊5C4 D4⋊Dic5 Q8⋊Dic5 C4×Dic10 C20⋊2Q8 C20.6Q8 C4×D20 Dic5.14D4 C23.D10 D10.12D4 C22.D20 C20⋊Q8 Dic5.Q8 C4.Dic10 D5×C4⋊C4 C4⋊C4⋊7D5 D10⋊2Q8 C4⋊C4⋊D5 C20.48D4 C23.21D10 C20⋊7D4 D4×Dic5 C20⋊2D4 Q8×Dic5 D10⋊3Q8 C6.Dic10 C60⋊5C4 C4⋊Dic25 Dic5⋊Dic5 C20⋊3Dic5 C20⋊5F5
C4⋊Dic5 is a maximal quotient of
C20⋊3C8 C40⋊6C4 C40⋊5C4 C40.6C4 C10.10C42 C6.Dic10 C60⋊5C4 C4⋊Dic25 Dic5⋊Dic5 C20⋊3Dic5 C20⋊5F5
Matrix representation of C4⋊Dic5 ►in GL3(𝔽41) generated by
40 | 0 | 0 |
0 | 39 | 32 |
0 | 37 | 2 |
40 | 0 | 0 |
0 | 1 | 40 |
0 | 36 | 6 |
9 | 0 | 0 |
0 | 6 | 38 |
0 | 26 | 35 |
G:=sub<GL(3,GF(41))| [40,0,0,0,39,37,0,32,2],[40,0,0,0,1,36,0,40,6],[9,0,0,0,6,26,0,38,35] >;
C4⋊Dic5 in GAP, Magma, Sage, TeX
C_4\rtimes {\rm Dic}_5
% in TeX
G:=Group("C4:Dic5");
// GroupNames label
G:=SmallGroup(80,13);
// by ID
G=gap.SmallGroup(80,13);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-5,20,101,46,1604]);
// Polycyclic
G:=Group<a,b,c|a^4=b^10=1,c^2=b^5,a*b=b*a,c*a*c^-1=a^-1,c*b*c^-1=b^-1>;
// generators/relations
Export
Subgroup lattice of C4⋊Dic5 in TeX
Character table of C4⋊Dic5 in TeX