Extensions 1→N→G→Q→1 with N=C2xDic3 and Q=C2xC10

Direct product G=NxQ with N=C2xDic3 and Q=C2xC10
dρLabelID
Dic3xC22xC10480Dic3xC2^2xC10480,1163

Semidirect products G=N:Q with N=C2xDic3 and Q=C2xC10
extensionφ:Q→Out NdρLabelID
(C2xDic3):1(C2xC10) = C5xD6:D4φ: C2xC10/C5C22 ⊆ Out C2xDic3120(C2xDic3):1(C2xC10)480,761
(C2xDic3):2(C2xC10) = C5xC23:2D6φ: C2xC10/C5C22 ⊆ Out C2xDic3120(C2xDic3):2(C2xC10)480,816
(C2xDic3):3(C2xC10) = C5xC24:4S3φ: C2xC10/C5C22 ⊆ Out C2xDic3120(C2xDic3):3(C2xC10)480,832
(C2xDic3):4(C2xC10) = C5xD4:6D6φ: C2xC10/C5C22 ⊆ Out C2xDic31204(C2xDic3):4(C2xC10)480,1156
(C2xDic3):5(C2xC10) = C5xS3xC22:C4φ: C2xC10/C10C2 ⊆ Out C2xDic3120(C2xDic3):5(C2xC10)480,759
(C2xDic3):6(C2xC10) = C10xD6:C4φ: C2xC10/C10C2 ⊆ Out C2xDic3240(C2xDic3):6(C2xC10)480,806
(C2xDic3):7(C2xC10) = C10xC6.D4φ: C2xC10/C10C2 ⊆ Out C2xDic3240(C2xDic3):7(C2xC10)480,831
(C2xDic3):8(C2xC10) = S3xD4xC10φ: C2xC10/C10C2 ⊆ Out C2xDic3120(C2xDic3):8(C2xC10)480,1154
(C2xDic3):9(C2xC10) = C10xD4:2S3φ: C2xC10/C10C2 ⊆ Out C2xDic3240(C2xDic3):9(C2xC10)480,1155
(C2xDic3):10(C2xC10) = C5xS3xC4oD4φ: C2xC10/C10C2 ⊆ Out C2xDic31204(C2xDic3):10(C2xC10)480,1160
(C2xDic3):11(C2xC10) = C2xC10xC3:D4φ: C2xC10/C10C2 ⊆ Out C2xDic3240(C2xDic3):11(C2xC10)480,1164
(C2xDic3):12(C2xC10) = S3xC22xC20φ: trivial image240(C2xDic3):12(C2xC10)480,1151

Non-split extensions G=N.Q with N=C2xDic3 and Q=C2xC10
extensionφ:Q→Out NdρLabelID
(C2xDic3).1(C2xC10) = C5xC12:2Q8φ: C2xC10/C5C22 ⊆ Out C2xDic3480(C2xDic3).1(C2xC10)480,748
(C2xDic3).2(C2xC10) = C5xC12.6Q8φ: C2xC10/C5C22 ⊆ Out C2xDic3480(C2xDic3).2(C2xC10)480,749
(C2xDic3).3(C2xC10) = C5xC42:7S3φ: C2xC10/C5C22 ⊆ Out C2xDic3240(C2xDic3).3(C2xC10)480,754
(C2xDic3).4(C2xC10) = C5xC42:3S3φ: C2xC10/C5C22 ⊆ Out C2xDic3240(C2xDic3).4(C2xC10)480,755
(C2xDic3).5(C2xC10) = C5xDic3.D4φ: C2xC10/C5C22 ⊆ Out C2xDic3240(C2xDic3).5(C2xC10)480,757
(C2xDic3).6(C2xC10) = C5xC23.8D6φ: C2xC10/C5C22 ⊆ Out C2xDic3240(C2xDic3).6(C2xC10)480,758
(C2xDic3).7(C2xC10) = C5xC23.11D6φ: C2xC10/C5C22 ⊆ Out C2xDic3240(C2xDic3).7(C2xC10)480,764
(C2xDic3).8(C2xC10) = C5xC23.21D6φ: C2xC10/C5C22 ⊆ Out C2xDic3240(C2xDic3).8(C2xC10)480,765
(C2xDic3).9(C2xC10) = C5xDic3.Q8φ: C2xC10/C5C22 ⊆ Out C2xDic3480(C2xDic3).9(C2xC10)480,768
(C2xDic3).10(C2xC10) = C5xC4.D12φ: C2xC10/C5C22 ⊆ Out C2xDic3240(C2xDic3).10(C2xC10)480,776
(C2xDic3).11(C2xC10) = C5xC12.48D4φ: C2xC10/C5C22 ⊆ Out C2xDic3240(C2xDic3).11(C2xC10)480,803
(C2xDic3).12(C2xC10) = C5xC23.28D6φ: C2xC10/C5C22 ⊆ Out C2xDic3240(C2xDic3).12(C2xC10)480,808
(C2xDic3).13(C2xC10) = C5xC12:7D4φ: C2xC10/C5C22 ⊆ Out C2xDic3240(C2xDic3).13(C2xC10)480,809
(C2xDic3).14(C2xC10) = C5xD6:3D4φ: C2xC10/C5C22 ⊆ Out C2xDic3240(C2xDic3).14(C2xC10)480,817
(C2xDic3).15(C2xC10) = C5xD6:3Q8φ: C2xC10/C5C22 ⊆ Out C2xDic3240(C2xDic3).15(C2xC10)480,825
(C2xDic3).16(C2xC10) = C5xQ8oD12φ: C2xC10/C5C22 ⊆ Out C2xDic32404(C2xDic3).16(C2xC10)480,1162
(C2xDic3).17(C2xC10) = C20xDic6φ: C2xC10/C10C2 ⊆ Out C2xDic3480(C2xDic3).17(C2xC10)480,747
(C2xDic3).18(C2xC10) = C5xC42:2S3φ: C2xC10/C10C2 ⊆ Out C2xDic3240(C2xDic3).18(C2xC10)480,751
(C2xDic3).19(C2xC10) = C20xD12φ: C2xC10/C10C2 ⊆ Out C2xDic3240(C2xDic3).19(C2xC10)480,752
(C2xDic3).20(C2xC10) = C5xC23.16D6φ: C2xC10/C10C2 ⊆ Out C2xDic3240(C2xDic3).20(C2xC10)480,756
(C2xDic3).21(C2xC10) = C5xC23.9D6φ: C2xC10/C10C2 ⊆ Out C2xDic3240(C2xDic3).21(C2xC10)480,762
(C2xDic3).22(C2xC10) = C5xDic3:D4φ: C2xC10/C10C2 ⊆ Out C2xDic3240(C2xDic3).22(C2xC10)480,763
(C2xDic3).23(C2xC10) = C5xDic6:C4φ: C2xC10/C10C2 ⊆ Out C2xDic3480(C2xDic3).23(C2xC10)480,766
(C2xDic3).24(C2xC10) = C5xC12:Q8φ: C2xC10/C10C2 ⊆ Out C2xDic3480(C2xDic3).24(C2xC10)480,767
(C2xDic3).25(C2xC10) = C5xC4.Dic6φ: C2xC10/C10C2 ⊆ Out C2xDic3480(C2xDic3).25(C2xC10)480,769
(C2xDic3).26(C2xC10) = C5xS3xC4:C4φ: C2xC10/C10C2 ⊆ Out C2xDic3240(C2xDic3).26(C2xC10)480,770
(C2xDic3).27(C2xC10) = C5xD6.D4φ: C2xC10/C10C2 ⊆ Out C2xDic3240(C2xDic3).27(C2xC10)480,773
(C2xDic3).28(C2xC10) = C5xC12:D4φ: C2xC10/C10C2 ⊆ Out C2xDic3240(C2xDic3).28(C2xC10)480,774
(C2xDic3).29(C2xC10) = C5xD6:Q8φ: C2xC10/C10C2 ⊆ Out C2xDic3240(C2xDic3).29(C2xC10)480,775
(C2xDic3).30(C2xC10) = C5xC4:C4:S3φ: C2xC10/C10C2 ⊆ Out C2xDic3240(C2xDic3).30(C2xC10)480,777
(C2xDic3).31(C2xC10) = C10xDic3:C4φ: C2xC10/C10C2 ⊆ Out C2xDic3480(C2xDic3).31(C2xC10)480,802
(C2xDic3).32(C2xC10) = C10xC4:Dic3φ: C2xC10/C10C2 ⊆ Out C2xDic3480(C2xDic3).32(C2xC10)480,804
(C2xDic3).33(C2xC10) = C5xC23.26D6φ: C2xC10/C10C2 ⊆ Out C2xDic3240(C2xDic3).33(C2xC10)480,805
(C2xDic3).34(C2xC10) = C20xC3:D4φ: C2xC10/C10C2 ⊆ Out C2xDic3240(C2xDic3).34(C2xC10)480,807
(C2xDic3).35(C2xC10) = C5xD4xDic3φ: C2xC10/C10C2 ⊆ Out C2xDic3240(C2xDic3).35(C2xC10)480,813
(C2xDic3).36(C2xC10) = C5xC23.23D6φ: C2xC10/C10C2 ⊆ Out C2xDic3240(C2xDic3).36(C2xC10)480,814
(C2xDic3).37(C2xC10) = C5xC23.12D6φ: C2xC10/C10C2 ⊆ Out C2xDic3240(C2xDic3).37(C2xC10)480,815
(C2xDic3).38(C2xC10) = C5xC23.14D6φ: C2xC10/C10C2 ⊆ Out C2xDic3240(C2xDic3).38(C2xC10)480,818
(C2xDic3).39(C2xC10) = C5xC12:3D4φ: C2xC10/C10C2 ⊆ Out C2xDic3240(C2xDic3).39(C2xC10)480,819
(C2xDic3).40(C2xC10) = C5xDic3:Q8φ: C2xC10/C10C2 ⊆ Out C2xDic3480(C2xDic3).40(C2xC10)480,823
(C2xDic3).41(C2xC10) = C5xQ8xDic3φ: C2xC10/C10C2 ⊆ Out C2xDic3480(C2xDic3).41(C2xC10)480,824
(C2xDic3).42(C2xC10) = C5xC12.23D4φ: C2xC10/C10C2 ⊆ Out C2xDic3240(C2xDic3).42(C2xC10)480,826
(C2xDic3).43(C2xC10) = C2xC10xDic6φ: C2xC10/C10C2 ⊆ Out C2xDic3480(C2xDic3).43(C2xC10)480,1150
(C2xDic3).44(C2xC10) = C10xC4oD12φ: C2xC10/C10C2 ⊆ Out C2xDic3240(C2xDic3).44(C2xC10)480,1153
(C2xDic3).45(C2xC10) = S3xQ8xC10φ: C2xC10/C10C2 ⊆ Out C2xDic3240(C2xDic3).45(C2xC10)480,1157
(C2xDic3).46(C2xC10) = S3xC4xC20φ: trivial image240(C2xDic3).46(C2xC10)480,750
(C2xDic3).47(C2xC10) = C5xDic3:4D4φ: trivial image240(C2xDic3).47(C2xC10)480,760
(C2xDic3).48(C2xC10) = C5xC4:C4:7S3φ: trivial image240(C2xDic3).48(C2xC10)480,771
(C2xDic3).49(C2xC10) = C5xDic3:5D4φ: trivial image240(C2xDic3).49(C2xC10)480,772
(C2xDic3).50(C2xC10) = Dic3xC2xC20φ: trivial image480(C2xDic3).50(C2xC10)480,801
(C2xDic3).51(C2xC10) = C10xQ8:3S3φ: trivial image240(C2xDic3).51(C2xC10)480,1158

׿
x
:
Z
F
o
wr
Q
<