extension | φ:Q→Out N | d | ρ | Label | ID |
(C2xDic3).1(C2xC10) = C5xC12:2Q8 | φ: C2xC10/C5 → C22 ⊆ Out C2xDic3 | 480 | | (C2xDic3).1(C2xC10) | 480,748 |
(C2xDic3).2(C2xC10) = C5xC12.6Q8 | φ: C2xC10/C5 → C22 ⊆ Out C2xDic3 | 480 | | (C2xDic3).2(C2xC10) | 480,749 |
(C2xDic3).3(C2xC10) = C5xC42:7S3 | φ: C2xC10/C5 → C22 ⊆ Out C2xDic3 | 240 | | (C2xDic3).3(C2xC10) | 480,754 |
(C2xDic3).4(C2xC10) = C5xC42:3S3 | φ: C2xC10/C5 → C22 ⊆ Out C2xDic3 | 240 | | (C2xDic3).4(C2xC10) | 480,755 |
(C2xDic3).5(C2xC10) = C5xDic3.D4 | φ: C2xC10/C5 → C22 ⊆ Out C2xDic3 | 240 | | (C2xDic3).5(C2xC10) | 480,757 |
(C2xDic3).6(C2xC10) = C5xC23.8D6 | φ: C2xC10/C5 → C22 ⊆ Out C2xDic3 | 240 | | (C2xDic3).6(C2xC10) | 480,758 |
(C2xDic3).7(C2xC10) = C5xC23.11D6 | φ: C2xC10/C5 → C22 ⊆ Out C2xDic3 | 240 | | (C2xDic3).7(C2xC10) | 480,764 |
(C2xDic3).8(C2xC10) = C5xC23.21D6 | φ: C2xC10/C5 → C22 ⊆ Out C2xDic3 | 240 | | (C2xDic3).8(C2xC10) | 480,765 |
(C2xDic3).9(C2xC10) = C5xDic3.Q8 | φ: C2xC10/C5 → C22 ⊆ Out C2xDic3 | 480 | | (C2xDic3).9(C2xC10) | 480,768 |
(C2xDic3).10(C2xC10) = C5xC4.D12 | φ: C2xC10/C5 → C22 ⊆ Out C2xDic3 | 240 | | (C2xDic3).10(C2xC10) | 480,776 |
(C2xDic3).11(C2xC10) = C5xC12.48D4 | φ: C2xC10/C5 → C22 ⊆ Out C2xDic3 | 240 | | (C2xDic3).11(C2xC10) | 480,803 |
(C2xDic3).12(C2xC10) = C5xC23.28D6 | φ: C2xC10/C5 → C22 ⊆ Out C2xDic3 | 240 | | (C2xDic3).12(C2xC10) | 480,808 |
(C2xDic3).13(C2xC10) = C5xC12:7D4 | φ: C2xC10/C5 → C22 ⊆ Out C2xDic3 | 240 | | (C2xDic3).13(C2xC10) | 480,809 |
(C2xDic3).14(C2xC10) = C5xD6:3D4 | φ: C2xC10/C5 → C22 ⊆ Out C2xDic3 | 240 | | (C2xDic3).14(C2xC10) | 480,817 |
(C2xDic3).15(C2xC10) = C5xD6:3Q8 | φ: C2xC10/C5 → C22 ⊆ Out C2xDic3 | 240 | | (C2xDic3).15(C2xC10) | 480,825 |
(C2xDic3).16(C2xC10) = C5xQ8oD12 | φ: C2xC10/C5 → C22 ⊆ Out C2xDic3 | 240 | 4 | (C2xDic3).16(C2xC10) | 480,1162 |
(C2xDic3).17(C2xC10) = C20xDic6 | φ: C2xC10/C10 → C2 ⊆ Out C2xDic3 | 480 | | (C2xDic3).17(C2xC10) | 480,747 |
(C2xDic3).18(C2xC10) = C5xC42:2S3 | φ: C2xC10/C10 → C2 ⊆ Out C2xDic3 | 240 | | (C2xDic3).18(C2xC10) | 480,751 |
(C2xDic3).19(C2xC10) = C20xD12 | φ: C2xC10/C10 → C2 ⊆ Out C2xDic3 | 240 | | (C2xDic3).19(C2xC10) | 480,752 |
(C2xDic3).20(C2xC10) = C5xC23.16D6 | φ: C2xC10/C10 → C2 ⊆ Out C2xDic3 | 240 | | (C2xDic3).20(C2xC10) | 480,756 |
(C2xDic3).21(C2xC10) = C5xC23.9D6 | φ: C2xC10/C10 → C2 ⊆ Out C2xDic3 | 240 | | (C2xDic3).21(C2xC10) | 480,762 |
(C2xDic3).22(C2xC10) = C5xDic3:D4 | φ: C2xC10/C10 → C2 ⊆ Out C2xDic3 | 240 | | (C2xDic3).22(C2xC10) | 480,763 |
(C2xDic3).23(C2xC10) = C5xDic6:C4 | φ: C2xC10/C10 → C2 ⊆ Out C2xDic3 | 480 | | (C2xDic3).23(C2xC10) | 480,766 |
(C2xDic3).24(C2xC10) = C5xC12:Q8 | φ: C2xC10/C10 → C2 ⊆ Out C2xDic3 | 480 | | (C2xDic3).24(C2xC10) | 480,767 |
(C2xDic3).25(C2xC10) = C5xC4.Dic6 | φ: C2xC10/C10 → C2 ⊆ Out C2xDic3 | 480 | | (C2xDic3).25(C2xC10) | 480,769 |
(C2xDic3).26(C2xC10) = C5xS3xC4:C4 | φ: C2xC10/C10 → C2 ⊆ Out C2xDic3 | 240 | | (C2xDic3).26(C2xC10) | 480,770 |
(C2xDic3).27(C2xC10) = C5xD6.D4 | φ: C2xC10/C10 → C2 ⊆ Out C2xDic3 | 240 | | (C2xDic3).27(C2xC10) | 480,773 |
(C2xDic3).28(C2xC10) = C5xC12:D4 | φ: C2xC10/C10 → C2 ⊆ Out C2xDic3 | 240 | | (C2xDic3).28(C2xC10) | 480,774 |
(C2xDic3).29(C2xC10) = C5xD6:Q8 | φ: C2xC10/C10 → C2 ⊆ Out C2xDic3 | 240 | | (C2xDic3).29(C2xC10) | 480,775 |
(C2xDic3).30(C2xC10) = C5xC4:C4:S3 | φ: C2xC10/C10 → C2 ⊆ Out C2xDic3 | 240 | | (C2xDic3).30(C2xC10) | 480,777 |
(C2xDic3).31(C2xC10) = C10xDic3:C4 | φ: C2xC10/C10 → C2 ⊆ Out C2xDic3 | 480 | | (C2xDic3).31(C2xC10) | 480,802 |
(C2xDic3).32(C2xC10) = C10xC4:Dic3 | φ: C2xC10/C10 → C2 ⊆ Out C2xDic3 | 480 | | (C2xDic3).32(C2xC10) | 480,804 |
(C2xDic3).33(C2xC10) = C5xC23.26D6 | φ: C2xC10/C10 → C2 ⊆ Out C2xDic3 | 240 | | (C2xDic3).33(C2xC10) | 480,805 |
(C2xDic3).34(C2xC10) = C20xC3:D4 | φ: C2xC10/C10 → C2 ⊆ Out C2xDic3 | 240 | | (C2xDic3).34(C2xC10) | 480,807 |
(C2xDic3).35(C2xC10) = C5xD4xDic3 | φ: C2xC10/C10 → C2 ⊆ Out C2xDic3 | 240 | | (C2xDic3).35(C2xC10) | 480,813 |
(C2xDic3).36(C2xC10) = C5xC23.23D6 | φ: C2xC10/C10 → C2 ⊆ Out C2xDic3 | 240 | | (C2xDic3).36(C2xC10) | 480,814 |
(C2xDic3).37(C2xC10) = C5xC23.12D6 | φ: C2xC10/C10 → C2 ⊆ Out C2xDic3 | 240 | | (C2xDic3).37(C2xC10) | 480,815 |
(C2xDic3).38(C2xC10) = C5xC23.14D6 | φ: C2xC10/C10 → C2 ⊆ Out C2xDic3 | 240 | | (C2xDic3).38(C2xC10) | 480,818 |
(C2xDic3).39(C2xC10) = C5xC12:3D4 | φ: C2xC10/C10 → C2 ⊆ Out C2xDic3 | 240 | | (C2xDic3).39(C2xC10) | 480,819 |
(C2xDic3).40(C2xC10) = C5xDic3:Q8 | φ: C2xC10/C10 → C2 ⊆ Out C2xDic3 | 480 | | (C2xDic3).40(C2xC10) | 480,823 |
(C2xDic3).41(C2xC10) = C5xQ8xDic3 | φ: C2xC10/C10 → C2 ⊆ Out C2xDic3 | 480 | | (C2xDic3).41(C2xC10) | 480,824 |
(C2xDic3).42(C2xC10) = C5xC12.23D4 | φ: C2xC10/C10 → C2 ⊆ Out C2xDic3 | 240 | | (C2xDic3).42(C2xC10) | 480,826 |
(C2xDic3).43(C2xC10) = C2xC10xDic6 | φ: C2xC10/C10 → C2 ⊆ Out C2xDic3 | 480 | | (C2xDic3).43(C2xC10) | 480,1150 |
(C2xDic3).44(C2xC10) = C10xC4oD12 | φ: C2xC10/C10 → C2 ⊆ Out C2xDic3 | 240 | | (C2xDic3).44(C2xC10) | 480,1153 |
(C2xDic3).45(C2xC10) = S3xQ8xC10 | φ: C2xC10/C10 → C2 ⊆ Out C2xDic3 | 240 | | (C2xDic3).45(C2xC10) | 480,1157 |
(C2xDic3).46(C2xC10) = S3xC4xC20 | φ: trivial image | 240 | | (C2xDic3).46(C2xC10) | 480,750 |
(C2xDic3).47(C2xC10) = C5xDic3:4D4 | φ: trivial image | 240 | | (C2xDic3).47(C2xC10) | 480,760 |
(C2xDic3).48(C2xC10) = C5xC4:C4:7S3 | φ: trivial image | 240 | | (C2xDic3).48(C2xC10) | 480,771 |
(C2xDic3).49(C2xC10) = C5xDic3:5D4 | φ: trivial image | 240 | | (C2xDic3).49(C2xC10) | 480,772 |
(C2xDic3).50(C2xC10) = Dic3xC2xC20 | φ: trivial image | 480 | | (C2xDic3).50(C2xC10) | 480,801 |
(C2xDic3).51(C2xC10) = C10xQ8:3S3 | φ: trivial image | 240 | | (C2xDic3).51(C2xC10) | 480,1158 |