Extensions 1→N→G→Q→1 with N=C2×Dic3 and Q=C2×C10

Direct product G=N×Q with N=C2×Dic3 and Q=C2×C10
dρLabelID
Dic3×C22×C10480Dic3xC2^2xC10480,1163

Semidirect products G=N:Q with N=C2×Dic3 and Q=C2×C10
extensionφ:Q→Out NdρLabelID
(C2×Dic3)⋊1(C2×C10) = C5×D6⋊D4φ: C2×C10/C5C22 ⊆ Out C2×Dic3120(C2xDic3):1(C2xC10)480,761
(C2×Dic3)⋊2(C2×C10) = C5×C232D6φ: C2×C10/C5C22 ⊆ Out C2×Dic3120(C2xDic3):2(C2xC10)480,816
(C2×Dic3)⋊3(C2×C10) = C5×C244S3φ: C2×C10/C5C22 ⊆ Out C2×Dic3120(C2xDic3):3(C2xC10)480,832
(C2×Dic3)⋊4(C2×C10) = C5×D46D6φ: C2×C10/C5C22 ⊆ Out C2×Dic31204(C2xDic3):4(C2xC10)480,1156
(C2×Dic3)⋊5(C2×C10) = C5×S3×C22⋊C4φ: C2×C10/C10C2 ⊆ Out C2×Dic3120(C2xDic3):5(C2xC10)480,759
(C2×Dic3)⋊6(C2×C10) = C10×D6⋊C4φ: C2×C10/C10C2 ⊆ Out C2×Dic3240(C2xDic3):6(C2xC10)480,806
(C2×Dic3)⋊7(C2×C10) = C10×C6.D4φ: C2×C10/C10C2 ⊆ Out C2×Dic3240(C2xDic3):7(C2xC10)480,831
(C2×Dic3)⋊8(C2×C10) = S3×D4×C10φ: C2×C10/C10C2 ⊆ Out C2×Dic3120(C2xDic3):8(C2xC10)480,1154
(C2×Dic3)⋊9(C2×C10) = C10×D42S3φ: C2×C10/C10C2 ⊆ Out C2×Dic3240(C2xDic3):9(C2xC10)480,1155
(C2×Dic3)⋊10(C2×C10) = C5×S3×C4○D4φ: C2×C10/C10C2 ⊆ Out C2×Dic31204(C2xDic3):10(C2xC10)480,1160
(C2×Dic3)⋊11(C2×C10) = C2×C10×C3⋊D4φ: C2×C10/C10C2 ⊆ Out C2×Dic3240(C2xDic3):11(C2xC10)480,1164
(C2×Dic3)⋊12(C2×C10) = S3×C22×C20φ: trivial image240(C2xDic3):12(C2xC10)480,1151

Non-split extensions G=N.Q with N=C2×Dic3 and Q=C2×C10
extensionφ:Q→Out NdρLabelID
(C2×Dic3).1(C2×C10) = C5×C122Q8φ: C2×C10/C5C22 ⊆ Out C2×Dic3480(C2xDic3).1(C2xC10)480,748
(C2×Dic3).2(C2×C10) = C5×C12.6Q8φ: C2×C10/C5C22 ⊆ Out C2×Dic3480(C2xDic3).2(C2xC10)480,749
(C2×Dic3).3(C2×C10) = C5×C427S3φ: C2×C10/C5C22 ⊆ Out C2×Dic3240(C2xDic3).3(C2xC10)480,754
(C2×Dic3).4(C2×C10) = C5×C423S3φ: C2×C10/C5C22 ⊆ Out C2×Dic3240(C2xDic3).4(C2xC10)480,755
(C2×Dic3).5(C2×C10) = C5×Dic3.D4φ: C2×C10/C5C22 ⊆ Out C2×Dic3240(C2xDic3).5(C2xC10)480,757
(C2×Dic3).6(C2×C10) = C5×C23.8D6φ: C2×C10/C5C22 ⊆ Out C2×Dic3240(C2xDic3).6(C2xC10)480,758
(C2×Dic3).7(C2×C10) = C5×C23.11D6φ: C2×C10/C5C22 ⊆ Out C2×Dic3240(C2xDic3).7(C2xC10)480,764
(C2×Dic3).8(C2×C10) = C5×C23.21D6φ: C2×C10/C5C22 ⊆ Out C2×Dic3240(C2xDic3).8(C2xC10)480,765
(C2×Dic3).9(C2×C10) = C5×Dic3.Q8φ: C2×C10/C5C22 ⊆ Out C2×Dic3480(C2xDic3).9(C2xC10)480,768
(C2×Dic3).10(C2×C10) = C5×C4.D12φ: C2×C10/C5C22 ⊆ Out C2×Dic3240(C2xDic3).10(C2xC10)480,776
(C2×Dic3).11(C2×C10) = C5×C12.48D4φ: C2×C10/C5C22 ⊆ Out C2×Dic3240(C2xDic3).11(C2xC10)480,803
(C2×Dic3).12(C2×C10) = C5×C23.28D6φ: C2×C10/C5C22 ⊆ Out C2×Dic3240(C2xDic3).12(C2xC10)480,808
(C2×Dic3).13(C2×C10) = C5×C127D4φ: C2×C10/C5C22 ⊆ Out C2×Dic3240(C2xDic3).13(C2xC10)480,809
(C2×Dic3).14(C2×C10) = C5×D63D4φ: C2×C10/C5C22 ⊆ Out C2×Dic3240(C2xDic3).14(C2xC10)480,817
(C2×Dic3).15(C2×C10) = C5×D63Q8φ: C2×C10/C5C22 ⊆ Out C2×Dic3240(C2xDic3).15(C2xC10)480,825
(C2×Dic3).16(C2×C10) = C5×Q8○D12φ: C2×C10/C5C22 ⊆ Out C2×Dic32404(C2xDic3).16(C2xC10)480,1162
(C2×Dic3).17(C2×C10) = C20×Dic6φ: C2×C10/C10C2 ⊆ Out C2×Dic3480(C2xDic3).17(C2xC10)480,747
(C2×Dic3).18(C2×C10) = C5×C422S3φ: C2×C10/C10C2 ⊆ Out C2×Dic3240(C2xDic3).18(C2xC10)480,751
(C2×Dic3).19(C2×C10) = C20×D12φ: C2×C10/C10C2 ⊆ Out C2×Dic3240(C2xDic3).19(C2xC10)480,752
(C2×Dic3).20(C2×C10) = C5×C23.16D6φ: C2×C10/C10C2 ⊆ Out C2×Dic3240(C2xDic3).20(C2xC10)480,756
(C2×Dic3).21(C2×C10) = C5×C23.9D6φ: C2×C10/C10C2 ⊆ Out C2×Dic3240(C2xDic3).21(C2xC10)480,762
(C2×Dic3).22(C2×C10) = C5×Dic3⋊D4φ: C2×C10/C10C2 ⊆ Out C2×Dic3240(C2xDic3).22(C2xC10)480,763
(C2×Dic3).23(C2×C10) = C5×Dic6⋊C4φ: C2×C10/C10C2 ⊆ Out C2×Dic3480(C2xDic3).23(C2xC10)480,766
(C2×Dic3).24(C2×C10) = C5×C12⋊Q8φ: C2×C10/C10C2 ⊆ Out C2×Dic3480(C2xDic3).24(C2xC10)480,767
(C2×Dic3).25(C2×C10) = C5×C4.Dic6φ: C2×C10/C10C2 ⊆ Out C2×Dic3480(C2xDic3).25(C2xC10)480,769
(C2×Dic3).26(C2×C10) = C5×S3×C4⋊C4φ: C2×C10/C10C2 ⊆ Out C2×Dic3240(C2xDic3).26(C2xC10)480,770
(C2×Dic3).27(C2×C10) = C5×D6.D4φ: C2×C10/C10C2 ⊆ Out C2×Dic3240(C2xDic3).27(C2xC10)480,773
(C2×Dic3).28(C2×C10) = C5×C12⋊D4φ: C2×C10/C10C2 ⊆ Out C2×Dic3240(C2xDic3).28(C2xC10)480,774
(C2×Dic3).29(C2×C10) = C5×D6⋊Q8φ: C2×C10/C10C2 ⊆ Out C2×Dic3240(C2xDic3).29(C2xC10)480,775
(C2×Dic3).30(C2×C10) = C5×C4⋊C4⋊S3φ: C2×C10/C10C2 ⊆ Out C2×Dic3240(C2xDic3).30(C2xC10)480,777
(C2×Dic3).31(C2×C10) = C10×Dic3⋊C4φ: C2×C10/C10C2 ⊆ Out C2×Dic3480(C2xDic3).31(C2xC10)480,802
(C2×Dic3).32(C2×C10) = C10×C4⋊Dic3φ: C2×C10/C10C2 ⊆ Out C2×Dic3480(C2xDic3).32(C2xC10)480,804
(C2×Dic3).33(C2×C10) = C5×C23.26D6φ: C2×C10/C10C2 ⊆ Out C2×Dic3240(C2xDic3).33(C2xC10)480,805
(C2×Dic3).34(C2×C10) = C20×C3⋊D4φ: C2×C10/C10C2 ⊆ Out C2×Dic3240(C2xDic3).34(C2xC10)480,807
(C2×Dic3).35(C2×C10) = C5×D4×Dic3φ: C2×C10/C10C2 ⊆ Out C2×Dic3240(C2xDic3).35(C2xC10)480,813
(C2×Dic3).36(C2×C10) = C5×C23.23D6φ: C2×C10/C10C2 ⊆ Out C2×Dic3240(C2xDic3).36(C2xC10)480,814
(C2×Dic3).37(C2×C10) = C5×C23.12D6φ: C2×C10/C10C2 ⊆ Out C2×Dic3240(C2xDic3).37(C2xC10)480,815
(C2×Dic3).38(C2×C10) = C5×C23.14D6φ: C2×C10/C10C2 ⊆ Out C2×Dic3240(C2xDic3).38(C2xC10)480,818
(C2×Dic3).39(C2×C10) = C5×C123D4φ: C2×C10/C10C2 ⊆ Out C2×Dic3240(C2xDic3).39(C2xC10)480,819
(C2×Dic3).40(C2×C10) = C5×Dic3⋊Q8φ: C2×C10/C10C2 ⊆ Out C2×Dic3480(C2xDic3).40(C2xC10)480,823
(C2×Dic3).41(C2×C10) = C5×Q8×Dic3φ: C2×C10/C10C2 ⊆ Out C2×Dic3480(C2xDic3).41(C2xC10)480,824
(C2×Dic3).42(C2×C10) = C5×C12.23D4φ: C2×C10/C10C2 ⊆ Out C2×Dic3240(C2xDic3).42(C2xC10)480,826
(C2×Dic3).43(C2×C10) = C2×C10×Dic6φ: C2×C10/C10C2 ⊆ Out C2×Dic3480(C2xDic3).43(C2xC10)480,1150
(C2×Dic3).44(C2×C10) = C10×C4○D12φ: C2×C10/C10C2 ⊆ Out C2×Dic3240(C2xDic3).44(C2xC10)480,1153
(C2×Dic3).45(C2×C10) = S3×Q8×C10φ: C2×C10/C10C2 ⊆ Out C2×Dic3240(C2xDic3).45(C2xC10)480,1157
(C2×Dic3).46(C2×C10) = S3×C4×C20φ: trivial image240(C2xDic3).46(C2xC10)480,750
(C2×Dic3).47(C2×C10) = C5×Dic34D4φ: trivial image240(C2xDic3).47(C2xC10)480,760
(C2×Dic3).48(C2×C10) = C5×C4⋊C47S3φ: trivial image240(C2xDic3).48(C2xC10)480,771
(C2×Dic3).49(C2×C10) = C5×Dic35D4φ: trivial image240(C2xDic3).49(C2xC10)480,772
(C2×Dic3).50(C2×C10) = Dic3×C2×C20φ: trivial image480(C2xDic3).50(C2xC10)480,801
(C2×Dic3).51(C2×C10) = C10×Q83S3φ: trivial image240(C2xDic3).51(C2xC10)480,1158

׿
×
𝔽