Extensions 1→N→G→Q→1 with N=C4×Dic5 and Q=S3

Direct product G=N×Q with N=C4×Dic5 and Q=S3
dρLabelID
C4×S3×Dic5240C4xS3xDic5480,473

Semidirect products G=N:Q with N=C4×Dic5 and Q=S3
extensionφ:Q→Out NdρLabelID
(C4×Dic5)⋊1S3 = C60.99D4φ: S3/C3C2 ⊆ Out C4×Dic51204(C4xDic5):1S3480,55
(C4×Dic5)⋊2S3 = D6016C4φ: S3/C3C2 ⊆ Out C4×Dic51204(C4xDic5):2S3480,57
(C4×Dic5)⋊3S3 = C60.69D4φ: S3/C3C2 ⊆ Out C4×Dic5240(C4xDic5):3S3480,449
(C4×Dic5)⋊4S3 = C60.70D4φ: S3/C3C2 ⊆ Out C4×Dic5240(C4xDic5):4S3480,451
(C4×Dic5)⋊5S3 = Dic5×D12φ: S3/C3C2 ⊆ Out C4×Dic5240(C4xDic5):5S3480,491
(C4×Dic5)⋊6S3 = D6017C4φ: S3/C3C2 ⊆ Out C4×Dic5240(C4xDic5):6S3480,494
(C4×Dic5)⋊7S3 = C20⋊D12φ: S3/C3C2 ⊆ Out C4×Dic5240(C4xDic5):7S3480,527
(C4×Dic5)⋊8S3 = Dic5.8D12φ: S3/C3C2 ⊆ Out C4×Dic5240(C4xDic5):8S3480,426
(C4×Dic5)⋊9S3 = (S3×C20)⋊7C4φ: S3/C3C2 ⊆ Out C4×Dic5240(C4xDic5):9S3480,447
(C4×Dic5)⋊10S3 = C5⋊(C423S3)φ: S3/C3C2 ⊆ Out C4×Dic5240(C4xDic5):10S3480,448
(C4×Dic5)⋊11S3 = (C4×D15)⋊10C4φ: S3/C3C2 ⊆ Out C4×Dic5240(C4xDic5):11S3480,462
(C4×Dic5)⋊12S3 = (C4×Dic5)⋊S3φ: S3/C3C2 ⊆ Out C4×Dic5240(C4xDic5):12S3480,463
(C4×Dic5)⋊13S3 = D6.(C4×D5)φ: S3/C3C2 ⊆ Out C4×Dic5240(C4xDic5):13S3480,474
(C4×Dic5)⋊14S3 = D30.C2⋊C4φ: S3/C3C2 ⊆ Out C4×Dic5240(C4xDic5):14S3480,478
(C4×Dic5)⋊15S3 = Dic54D12φ: S3/C3C2 ⊆ Out C4×Dic5240(C4xDic5):15S3480,481
(C4×Dic5)⋊16S3 = C4×C5⋊D12φ: S3/C3C2 ⊆ Out C4×Dic5240(C4xDic5):16S3480,521
(C4×Dic5)⋊17S3 = C4×D30.C2φ: trivial image240(C4xDic5):17S3480,477

Non-split extensions G=N.Q with N=C4×Dic5 and Q=S3
extensionφ:Q→Out NdρLabelID
(C4×Dic5).1S3 = Dic5×Dic6φ: S3/C3C2 ⊆ Out C4×Dic5480(C4xDic5).1S3480,408
(C4×Dic5).2S3 = Dic3017C4φ: S3/C3C2 ⊆ Out C4×Dic5480(C4xDic5).2S3480,409
(C4×Dic5).3S3 = Dic5⋊Dic6φ: S3/C3C2 ⊆ Out C4×Dic5480(C4xDic5).3S3480,452
(C4×Dic5).4S3 = C20.Dic6φ: S3/C3C2 ⊆ Out C4×Dic5480(C4xDic5).4S3480,464
(C4×Dic5).5S3 = C60⋊Q8φ: S3/C3C2 ⊆ Out C4×Dic5480(C4xDic5).5S3480,544
(C4×Dic5).6S3 = C30.21C42φ: S3/C3C2 ⊆ Out C4×Dic5480(C4xDic5).6S3480,28
(C4×Dic5).7S3 = C60.13Q8φ: S3/C3C2 ⊆ Out C4×Dic5480(C4xDic5).7S3480,58
(C4×Dic5).8S3 = C30.11C42φ: S3/C3C2 ⊆ Out C4×Dic5480(C4xDic5).8S3480,307
(C4×Dic5).9S3 = Dic5.13D12φ: S3/C3C2 ⊆ Out C4×Dic5480(C4xDic5).9S3480,309
(C4×Dic5).10S3 = Dic55Dic6φ: S3/C3C2 ⊆ Out C4×Dic5480(C4xDic5).10S3480,399
(C4×Dic5).11S3 = Dic5.7Dic6φ: S3/C3C2 ⊆ Out C4×Dic5480(C4xDic5).11S3480,454
(C4×Dic5).12S3 = C4×C15⋊Q8φ: S3/C3C2 ⊆ Out C4×Dic5480(C4xDic5).12S3480,543
(C4×Dic5).13S3 = C60⋊C8φ: S3/C3C2 ⊆ Out C4×Dic5480(C4xDic5).13S3480,306
(C4×Dic5).14S3 = C4×C15⋊C8φ: S3/C3C2 ⊆ Out C4×Dic5480(C4xDic5).14S3480,305
(C4×Dic5).15S3 = Dic5×C3⋊C8φ: trivial image480(C4xDic5).15S3480,25

׿
×
𝔽