Copied to
clipboard

G = C60.99D4order 480 = 25·3·5

99th non-split extension by C60 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C60.99D4, D122Dic5, C20.56D12, Dic62Dic5, C158C4≀C2, (C5×D12)⋊8C4, C20.40(C4×S3), (C5×Dic6)⋊8C4, (C4×Dic5)⋊1S3, C4○D12.1D5, (C2×C20).56D6, (C2×C30).26D4, C4.3(S3×Dic5), C55(C424S3), C60.109(C2×C4), (C12×Dic5)⋊1C2, C60.7C411C2, C10.46(D6⋊C4), (C2×C12).312D10, C32(D42Dic5), C12.64(C5⋊D4), C4.28(C5⋊D12), (C2×C60).43C22, C12.18(C2×Dic5), C6.9(C23.D5), C30.62(C22⋊C4), C2.10(D6⋊Dic5), C22.2(C15⋊D4), (C5×C4○D12).2C2, (C2×C4).137(S3×D5), (C2×C10).2(C3⋊D4), (C2×C6).47(C5⋊D4), SmallGroup(480,55)

Series: Derived Chief Lower central Upper central

C1C60 — C60.99D4
C1C5C15C30C2×C30C2×C60C12×Dic5 — C60.99D4
C15C30C60 — C60.99D4
C1C4C2×C4

Generators and relations for C60.99D4
 G = < a,b,c | a60=b4=1, c2=a15, bab-1=a49, cac-1=a29, cbc-1=a15b-1 >

Subgroups: 332 in 88 conjugacy classes, 34 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, S3, C6, C6, C8, C2×C4, C2×C4, D4, Q8, C10, C10, Dic3, C12, C12, D6, C2×C6, C15, C42, M4(2), C4○D4, Dic5, C20, C20, C2×C10, C2×C10, C3⋊C8, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C2×C12, C5×S3, C30, C30, C4≀C2, C52C8, C2×Dic5, C2×C20, C2×C20, C5×D4, C5×Q8, C4.Dic3, C4×C12, C4○D12, C5×Dic3, C3×Dic5, C60, S3×C10, C2×C30, C4.Dic5, C4×Dic5, C5×C4○D4, C424S3, C153C8, C6×Dic5, C5×Dic6, S3×C20, C5×D12, C5×C3⋊D4, C2×C60, D42Dic5, C12×Dic5, C60.7C4, C5×C4○D12, C60.99D4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D5, D6, C22⋊C4, Dic5, D10, C4×S3, D12, C3⋊D4, C4≀C2, C2×Dic5, C5⋊D4, D6⋊C4, S3×D5, C23.D5, C424S3, S3×Dic5, C15⋊D4, C5⋊D12, D42Dic5, D6⋊Dic5, C60.99D4

Smallest permutation representation of C60.99D4
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 31)(2 20)(3 9)(4 58)(5 47)(6 36)(7 25)(8 14)(10 52)(11 41)(12 30)(13 19)(15 57)(16 46)(17 35)(18 24)(21 51)(22 40)(23 29)(26 56)(27 45)(28 34)(32 50)(33 39)(37 55)(38 44)(42 60)(43 49)(48 54)(53 59)(61 94 91 64)(62 83 92 113)(63 72 93 102)(65 110 95 80)(66 99 96 69)(67 88 97 118)(68 77 98 107)(70 115 100 85)(71 104 101 74)(73 82 103 112)(75 120 105 90)(76 109 106 79)(78 87 108 117)(81 114 111 84)(86 119 116 89)
(1 110 16 65 31 80 46 95)(2 79 17 94 32 109 47 64)(3 108 18 63 33 78 48 93)(4 77 19 92 34 107 49 62)(5 106 20 61 35 76 50 91)(6 75 21 90 36 105 51 120)(7 104 22 119 37 74 52 89)(8 73 23 88 38 103 53 118)(9 102 24 117 39 72 54 87)(10 71 25 86 40 101 55 116)(11 100 26 115 41 70 56 85)(12 69 27 84 42 99 57 114)(13 98 28 113 43 68 58 83)(14 67 29 82 44 97 59 112)(15 96 30 111 45 66 60 81)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,31)(2,20)(3,9)(4,58)(5,47)(6,36)(7,25)(8,14)(10,52)(11,41)(12,30)(13,19)(15,57)(16,46)(17,35)(18,24)(21,51)(22,40)(23,29)(26,56)(27,45)(28,34)(32,50)(33,39)(37,55)(38,44)(42,60)(43,49)(48,54)(53,59)(61,94,91,64)(62,83,92,113)(63,72,93,102)(65,110,95,80)(66,99,96,69)(67,88,97,118)(68,77,98,107)(70,115,100,85)(71,104,101,74)(73,82,103,112)(75,120,105,90)(76,109,106,79)(78,87,108,117)(81,114,111,84)(86,119,116,89), (1,110,16,65,31,80,46,95)(2,79,17,94,32,109,47,64)(3,108,18,63,33,78,48,93)(4,77,19,92,34,107,49,62)(5,106,20,61,35,76,50,91)(6,75,21,90,36,105,51,120)(7,104,22,119,37,74,52,89)(8,73,23,88,38,103,53,118)(9,102,24,117,39,72,54,87)(10,71,25,86,40,101,55,116)(11,100,26,115,41,70,56,85)(12,69,27,84,42,99,57,114)(13,98,28,113,43,68,58,83)(14,67,29,82,44,97,59,112)(15,96,30,111,45,66,60,81)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,31)(2,20)(3,9)(4,58)(5,47)(6,36)(7,25)(8,14)(10,52)(11,41)(12,30)(13,19)(15,57)(16,46)(17,35)(18,24)(21,51)(22,40)(23,29)(26,56)(27,45)(28,34)(32,50)(33,39)(37,55)(38,44)(42,60)(43,49)(48,54)(53,59)(61,94,91,64)(62,83,92,113)(63,72,93,102)(65,110,95,80)(66,99,96,69)(67,88,97,118)(68,77,98,107)(70,115,100,85)(71,104,101,74)(73,82,103,112)(75,120,105,90)(76,109,106,79)(78,87,108,117)(81,114,111,84)(86,119,116,89), (1,110,16,65,31,80,46,95)(2,79,17,94,32,109,47,64)(3,108,18,63,33,78,48,93)(4,77,19,92,34,107,49,62)(5,106,20,61,35,76,50,91)(6,75,21,90,36,105,51,120)(7,104,22,119,37,74,52,89)(8,73,23,88,38,103,53,118)(9,102,24,117,39,72,54,87)(10,71,25,86,40,101,55,116)(11,100,26,115,41,70,56,85)(12,69,27,84,42,99,57,114)(13,98,28,113,43,68,58,83)(14,67,29,82,44,97,59,112)(15,96,30,111,45,66,60,81) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,31),(2,20),(3,9),(4,58),(5,47),(6,36),(7,25),(8,14),(10,52),(11,41),(12,30),(13,19),(15,57),(16,46),(17,35),(18,24),(21,51),(22,40),(23,29),(26,56),(27,45),(28,34),(32,50),(33,39),(37,55),(38,44),(42,60),(43,49),(48,54),(53,59),(61,94,91,64),(62,83,92,113),(63,72,93,102),(65,110,95,80),(66,99,96,69),(67,88,97,118),(68,77,98,107),(70,115,100,85),(71,104,101,74),(73,82,103,112),(75,120,105,90),(76,109,106,79),(78,87,108,117),(81,114,111,84),(86,119,116,89)], [(1,110,16,65,31,80,46,95),(2,79,17,94,32,109,47,64),(3,108,18,63,33,78,48,93),(4,77,19,92,34,107,49,62),(5,106,20,61,35,76,50,91),(6,75,21,90,36,105,51,120),(7,104,22,119,37,74,52,89),(8,73,23,88,38,103,53,118),(9,102,24,117,39,72,54,87),(10,71,25,86,40,101,55,116),(11,100,26,115,41,70,56,85),(12,69,27,84,42,99,57,114),(13,98,28,113,43,68,58,83),(14,67,29,82,44,97,59,112),(15,96,30,111,45,66,60,81)]])

66 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E4F4G4H5A5B6A6B6C8A8B10A10B10C10D10E10F10G10H12A12B12C12D12E···12L15A15B20A20B20C20D20E20F20G20H20I20J30A···30F60A···60H
order1222344444444556668810101010101010101212121212···1215152020202020202020202030···3060···60
size1121221121010101012222226060224412121212222210···1044222244121212124···44···4

66 irreducible representations

dim111111222222222222222444444
type+++++++++--+++-+-
imageC1C2C2C2C4C4S3D4D4D5D6Dic5Dic5D10C4×S3D12C3⋊D4C4≀C2C5⋊D4C5⋊D4C424S3S3×D5S3×Dic5C5⋊D12C15⋊D4D42Dic5C60.99D4
kernelC60.99D4C12×Dic5C60.7C4C5×C4○D12C5×Dic6C5×D12C4×Dic5C60C2×C30C4○D12C2×C20Dic6D12C2×C12C20C20C2×C10C15C12C2×C6C5C2×C4C4C4C22C3C1
# reps111122111212222224448222248

Matrix representation of C60.99D4 in GL6(𝔽241)

1600000
02260000
0064000
0006400
0000151
000019051
,
100000
02400000
00240000
0006400
0000151
00000240
,
02400000
100000
0006400
00240000
0000165172
000019276

G:=sub<GL(6,GF(241))| [16,0,0,0,0,0,0,226,0,0,0,0,0,0,64,0,0,0,0,0,0,64,0,0,0,0,0,0,1,190,0,0,0,0,51,51],[1,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,64,0,0,0,0,0,0,1,0,0,0,0,0,51,240],[0,1,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,64,0,0,0,0,0,0,0,165,192,0,0,0,0,172,76] >;

C60.99D4 in GAP, Magma, Sage, TeX

C_{60}._{99}D_4
% in TeX

G:=Group("C60.99D4");
// GroupNames label

G:=SmallGroup(480,55);
// by ID

G=gap.SmallGroup(480,55);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,28,141,219,346,80,1356,18822]);
// Polycyclic

G:=Group<a,b,c|a^60=b^4=1,c^2=a^15,b*a*b^-1=a^49,c*a*c^-1=a^29,c*b*c^-1=a^15*b^-1>;
// generators/relations

׿
×
𝔽