metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C60.99D4, D12⋊2Dic5, C20.56D12, Dic6⋊2Dic5, C15⋊8C4≀C2, (C5×D12)⋊8C4, C20.40(C4×S3), (C5×Dic6)⋊8C4, (C4×Dic5)⋊1S3, C4○D12.1D5, (C2×C20).56D6, (C2×C30).26D4, C4.3(S3×Dic5), C5⋊5(C42⋊4S3), C60.109(C2×C4), (C12×Dic5)⋊1C2, C60.7C4⋊11C2, C10.46(D6⋊C4), (C2×C12).312D10, C3⋊2(D4⋊2Dic5), C12.64(C5⋊D4), C4.28(C5⋊D12), (C2×C60).43C22, C12.18(C2×Dic5), C6.9(C23.D5), C30.62(C22⋊C4), C2.10(D6⋊Dic5), C22.2(C15⋊D4), (C5×C4○D12).2C2, (C2×C4).137(S3×D5), (C2×C10).2(C3⋊D4), (C2×C6).47(C5⋊D4), SmallGroup(480,55)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C60.99D4
G = < a,b,c | a60=b4=1, c2=a15, bab-1=a49, cac-1=a29, cbc-1=a15b-1 >
Subgroups: 332 in 88 conjugacy classes, 34 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, S3, C6, C6, C8, C2×C4, C2×C4, D4, Q8, C10, C10, Dic3, C12, C12, D6, C2×C6, C15, C42, M4(2), C4○D4, Dic5, C20, C20, C2×C10, C2×C10, C3⋊C8, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C2×C12, C5×S3, C30, C30, C4≀C2, C5⋊2C8, C2×Dic5, C2×C20, C2×C20, C5×D4, C5×Q8, C4.Dic3, C4×C12, C4○D12, C5×Dic3, C3×Dic5, C60, S3×C10, C2×C30, C4.Dic5, C4×Dic5, C5×C4○D4, C42⋊4S3, C15⋊3C8, C6×Dic5, C5×Dic6, S3×C20, C5×D12, C5×C3⋊D4, C2×C60, D4⋊2Dic5, C12×Dic5, C60.7C4, C5×C4○D12, C60.99D4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D5, D6, C22⋊C4, Dic5, D10, C4×S3, D12, C3⋊D4, C4≀C2, C2×Dic5, C5⋊D4, D6⋊C4, S3×D5, C23.D5, C42⋊4S3, S3×Dic5, C15⋊D4, C5⋊D12, D4⋊2Dic5, D6⋊Dic5, C60.99D4
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 31)(2 20)(3 9)(4 58)(5 47)(6 36)(7 25)(8 14)(10 52)(11 41)(12 30)(13 19)(15 57)(16 46)(17 35)(18 24)(21 51)(22 40)(23 29)(26 56)(27 45)(28 34)(32 50)(33 39)(37 55)(38 44)(42 60)(43 49)(48 54)(53 59)(61 94 91 64)(62 83 92 113)(63 72 93 102)(65 110 95 80)(66 99 96 69)(67 88 97 118)(68 77 98 107)(70 115 100 85)(71 104 101 74)(73 82 103 112)(75 120 105 90)(76 109 106 79)(78 87 108 117)(81 114 111 84)(86 119 116 89)
(1 110 16 65 31 80 46 95)(2 79 17 94 32 109 47 64)(3 108 18 63 33 78 48 93)(4 77 19 92 34 107 49 62)(5 106 20 61 35 76 50 91)(6 75 21 90 36 105 51 120)(7 104 22 119 37 74 52 89)(8 73 23 88 38 103 53 118)(9 102 24 117 39 72 54 87)(10 71 25 86 40 101 55 116)(11 100 26 115 41 70 56 85)(12 69 27 84 42 99 57 114)(13 98 28 113 43 68 58 83)(14 67 29 82 44 97 59 112)(15 96 30 111 45 66 60 81)
G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,31)(2,20)(3,9)(4,58)(5,47)(6,36)(7,25)(8,14)(10,52)(11,41)(12,30)(13,19)(15,57)(16,46)(17,35)(18,24)(21,51)(22,40)(23,29)(26,56)(27,45)(28,34)(32,50)(33,39)(37,55)(38,44)(42,60)(43,49)(48,54)(53,59)(61,94,91,64)(62,83,92,113)(63,72,93,102)(65,110,95,80)(66,99,96,69)(67,88,97,118)(68,77,98,107)(70,115,100,85)(71,104,101,74)(73,82,103,112)(75,120,105,90)(76,109,106,79)(78,87,108,117)(81,114,111,84)(86,119,116,89), (1,110,16,65,31,80,46,95)(2,79,17,94,32,109,47,64)(3,108,18,63,33,78,48,93)(4,77,19,92,34,107,49,62)(5,106,20,61,35,76,50,91)(6,75,21,90,36,105,51,120)(7,104,22,119,37,74,52,89)(8,73,23,88,38,103,53,118)(9,102,24,117,39,72,54,87)(10,71,25,86,40,101,55,116)(11,100,26,115,41,70,56,85)(12,69,27,84,42,99,57,114)(13,98,28,113,43,68,58,83)(14,67,29,82,44,97,59,112)(15,96,30,111,45,66,60,81)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,31)(2,20)(3,9)(4,58)(5,47)(6,36)(7,25)(8,14)(10,52)(11,41)(12,30)(13,19)(15,57)(16,46)(17,35)(18,24)(21,51)(22,40)(23,29)(26,56)(27,45)(28,34)(32,50)(33,39)(37,55)(38,44)(42,60)(43,49)(48,54)(53,59)(61,94,91,64)(62,83,92,113)(63,72,93,102)(65,110,95,80)(66,99,96,69)(67,88,97,118)(68,77,98,107)(70,115,100,85)(71,104,101,74)(73,82,103,112)(75,120,105,90)(76,109,106,79)(78,87,108,117)(81,114,111,84)(86,119,116,89), (1,110,16,65,31,80,46,95)(2,79,17,94,32,109,47,64)(3,108,18,63,33,78,48,93)(4,77,19,92,34,107,49,62)(5,106,20,61,35,76,50,91)(6,75,21,90,36,105,51,120)(7,104,22,119,37,74,52,89)(8,73,23,88,38,103,53,118)(9,102,24,117,39,72,54,87)(10,71,25,86,40,101,55,116)(11,100,26,115,41,70,56,85)(12,69,27,84,42,99,57,114)(13,98,28,113,43,68,58,83)(14,67,29,82,44,97,59,112)(15,96,30,111,45,66,60,81) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,31),(2,20),(3,9),(4,58),(5,47),(6,36),(7,25),(8,14),(10,52),(11,41),(12,30),(13,19),(15,57),(16,46),(17,35),(18,24),(21,51),(22,40),(23,29),(26,56),(27,45),(28,34),(32,50),(33,39),(37,55),(38,44),(42,60),(43,49),(48,54),(53,59),(61,94,91,64),(62,83,92,113),(63,72,93,102),(65,110,95,80),(66,99,96,69),(67,88,97,118),(68,77,98,107),(70,115,100,85),(71,104,101,74),(73,82,103,112),(75,120,105,90),(76,109,106,79),(78,87,108,117),(81,114,111,84),(86,119,116,89)], [(1,110,16,65,31,80,46,95),(2,79,17,94,32,109,47,64),(3,108,18,63,33,78,48,93),(4,77,19,92,34,107,49,62),(5,106,20,61,35,76,50,91),(6,75,21,90,36,105,51,120),(7,104,22,119,37,74,52,89),(8,73,23,88,38,103,53,118),(9,102,24,117,39,72,54,87),(10,71,25,86,40,101,55,116),(11,100,26,115,41,70,56,85),(12,69,27,84,42,99,57,114),(13,98,28,113,43,68,58,83),(14,67,29,82,44,97,59,112),(15,96,30,111,45,66,60,81)]])
66 conjugacy classes
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 5A | 5B | 6A | 6B | 6C | 8A | 8B | 10A | 10B | 10C | 10D | 10E | 10F | 10G | 10H | 12A | 12B | 12C | 12D | 12E | ··· | 12L | 15A | 15B | 20A | 20B | 20C | 20D | 20E | 20F | 20G | 20H | 20I | 20J | 30A | ··· | 30F | 60A | ··· | 60H |
order | 1 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 6 | 6 | 6 | 8 | 8 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 15 | 15 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 30 | ··· | 30 | 60 | ··· | 60 |
size | 1 | 1 | 2 | 12 | 2 | 1 | 1 | 2 | 10 | 10 | 10 | 10 | 12 | 2 | 2 | 2 | 2 | 2 | 60 | 60 | 2 | 2 | 4 | 4 | 12 | 12 | 12 | 12 | 2 | 2 | 2 | 2 | 10 | ··· | 10 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 12 | 12 | 12 | 12 | 4 | ··· | 4 | 4 | ··· | 4 |
66 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | - | - | + | + | + | - | + | - | ||||||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | S3 | D4 | D4 | D5 | D6 | Dic5 | Dic5 | D10 | C4×S3 | D12 | C3⋊D4 | C4≀C2 | C5⋊D4 | C5⋊D4 | C42⋊4S3 | S3×D5 | S3×Dic5 | C5⋊D12 | C15⋊D4 | D4⋊2Dic5 | C60.99D4 |
kernel | C60.99D4 | C12×Dic5 | C60.7C4 | C5×C4○D12 | C5×Dic6 | C5×D12 | C4×Dic5 | C60 | C2×C30 | C4○D12 | C2×C20 | Dic6 | D12 | C2×C12 | C20 | C20 | C2×C10 | C15 | C12 | C2×C6 | C5 | C2×C4 | C4 | C4 | C22 | C3 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 2 | 2 | 2 | 2 | 4 | 8 |
Matrix representation of C60.99D4 ►in GL6(𝔽241)
16 | 0 | 0 | 0 | 0 | 0 |
0 | 226 | 0 | 0 | 0 | 0 |
0 | 0 | 64 | 0 | 0 | 0 |
0 | 0 | 0 | 64 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 51 |
0 | 0 | 0 | 0 | 190 | 51 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 240 | 0 | 0 | 0 | 0 |
0 | 0 | 240 | 0 | 0 | 0 |
0 | 0 | 0 | 64 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 51 |
0 | 0 | 0 | 0 | 0 | 240 |
0 | 240 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 64 | 0 | 0 |
0 | 0 | 240 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 165 | 172 |
0 | 0 | 0 | 0 | 192 | 76 |
G:=sub<GL(6,GF(241))| [16,0,0,0,0,0,0,226,0,0,0,0,0,0,64,0,0,0,0,0,0,64,0,0,0,0,0,0,1,190,0,0,0,0,51,51],[1,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,64,0,0,0,0,0,0,1,0,0,0,0,0,51,240],[0,1,0,0,0,0,240,0,0,0,0,0,0,0,0,240,0,0,0,0,64,0,0,0,0,0,0,0,165,192,0,0,0,0,172,76] >;
C60.99D4 in GAP, Magma, Sage, TeX
C_{60}._{99}D_4
% in TeX
G:=Group("C60.99D4");
// GroupNames label
G:=SmallGroup(480,55);
// by ID
G=gap.SmallGroup(480,55);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,28,141,219,346,80,1356,18822]);
// Polycyclic
G:=Group<a,b,c|a^60=b^4=1,c^2=a^15,b*a*b^-1=a^49,c*a*c^-1=a^29,c*b*c^-1=a^15*b^-1>;
// generators/relations