Extensions 1→N→G→Q→1 with N=C15⋊D8 and Q=C2

Direct product G=N×Q with N=C15⋊D8 and Q=C2
dρLabelID
C2×C15⋊D8240C2xC15:D8480,372

Semidirect products G=N:Q with N=C15⋊D8 and Q=C2
extensionφ:Q→Out NdρLabelID
C15⋊D81C2 = D5×D4⋊S3φ: C2/C1C2 ⊆ Out C15⋊D81208+C15:D8:1C2480,553
C15⋊D82C2 = S3×D4⋊D5φ: C2/C1C2 ⊆ Out C15⋊D81208+C15:D8:2C2480,555
C15⋊D83C2 = D1210D10φ: C2/C1C2 ⊆ Out C15⋊D81208-C15:D8:3C2480,565
C15⋊D84C2 = D2010D6φ: C2/C1C2 ⊆ Out C15⋊D81208-C15:D8:4C2480,570
C15⋊D85C2 = D20⋊D6φ: C2/C1C2 ⊆ Out C15⋊D81208+C15:D8:5C2480,578
C15⋊D86C2 = D12⋊D10φ: C2/C1C2 ⊆ Out C15⋊D81208+C15:D8:6C2480,580
C15⋊D87C2 = D20.14D6φ: C2/C1C2 ⊆ Out C15⋊D82408-C15:D8:7C2480,590
C15⋊D88C2 = D20.27D6φ: C2/C1C2 ⊆ Out C15⋊D82408-C15:D8:8C2480,593
C15⋊D89C2 = C405D6φ: C2/C1C2 ⊆ Out C15⋊D81204C15:D8:9C2480,332
C15⋊D810C2 = D246D5φ: C2/C1C2 ⊆ Out C15⋊D81204C15:D8:10C2480,333
C15⋊D811C2 = C408D6φ: C2/C1C2 ⊆ Out C15⋊D81204C15:D8:11C2480,334
C15⋊D812C2 = Dic6.D10φ: C2/C1C2 ⊆ Out C15⋊D82404C15:D8:12C2480,352
C15⋊D813C2 = C60.36D4φ: C2/C1C2 ⊆ Out C15⋊D81204C15:D8:13C2480,374
C15⋊D814C2 = D2021D6φ: C2/C1C2 ⊆ Out C15⋊D81204C15:D8:14C2480,375
C15⋊D815C2 = D20.34D6φ: trivial image2404C15:D8:15C2480,373


׿
×
𝔽