Copied to
clipboard

G = C60.36D4order 480 = 25·3·5

36th non-split extension by C60 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C60.36D4, D1221D10, D20.35D6, Dic618D10, C60.151C23, C4○D123D5, (C2×D20)⋊8S3, (C6×D20)⋊1C2, C15⋊D813C2, C157(C8⋊C22), (C2×C20).85D6, (C2×C30).41D4, C30.73(C2×D4), C60.7C46C2, C34(D4⋊D10), (C2×C12).86D10, C54(D126C22), C153C821C22, C30.D413C2, (C5×D12)⋊28C22, C4.23(C15⋊D4), C12.26(C5⋊D4), C20.81(C3⋊D4), (C2×C60).31C22, C20.86(C22×S3), C12.86(C22×D5), (C5×Dic6)⋊24C22, (C3×D20).41C22, C22.4(C15⋊D4), (C2×C4).7(S3×D5), C4.124(C2×S3×D5), (C5×C4○D12)⋊1C2, C6.73(C2×C5⋊D4), C2.7(C2×C15⋊D4), C10.74(C2×C3⋊D4), (C2×C6).52(C5⋊D4), (C2×C10).9(C3⋊D4), SmallGroup(480,374)

Series: Derived Chief Lower central Upper central

C1C60 — C60.36D4
C1C5C15C30C60C3×D20C15⋊D8 — C60.36D4
C15C30C60 — C60.36D4
C1C2C2×C4

Generators and relations for C60.36D4
 G = < a,b,c | a60=c2=1, b4=a30, bab-1=a-1, cac=a19, cbc=a30b3 >

Subgroups: 668 in 136 conjugacy classes, 44 normal (34 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, S3, C6, C6, C8, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C10, Dic3, C12, D6, C2×C6, C2×C6, C15, M4(2), D8, SD16, C2×D4, C4○D4, C20, C20, D10, C2×C10, C2×C10, C3⋊C8, Dic6, C4×S3, D12, C3⋊D4, C2×C12, C3×D4, C22×C6, C5×S3, C3×D5, C30, C30, C8⋊C22, C52C8, D20, D20, C2×C20, C2×C20, C5×D4, C5×Q8, C22×D5, C4.Dic3, D4⋊S3, D4.S3, C4○D12, C6×D4, C5×Dic3, C60, C6×D5, S3×C10, C2×C30, C4.Dic5, D4⋊D5, Q8⋊D5, C2×D20, C5×C4○D4, D126C22, C153C8, C3×D20, C3×D20, C5×Dic6, S3×C20, C5×D12, C5×C3⋊D4, C2×C60, D5×C2×C6, D4⋊D10, C15⋊D8, C30.D4, C60.7C4, C6×D20, C5×C4○D12, C60.36D4
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2×D4, D10, C3⋊D4, C22×S3, C8⋊C22, C5⋊D4, C22×D5, C2×C3⋊D4, S3×D5, C2×C5⋊D4, D126C22, C15⋊D4, C2×S3×D5, D4⋊D10, C2×C15⋊D4, C60.36D4

Smallest permutation representation of C60.36D4
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 106 16 91 31 76 46 61)(2 105 17 90 32 75 47 120)(3 104 18 89 33 74 48 119)(4 103 19 88 34 73 49 118)(5 102 20 87 35 72 50 117)(6 101 21 86 36 71 51 116)(7 100 22 85 37 70 52 115)(8 99 23 84 38 69 53 114)(9 98 24 83 39 68 54 113)(10 97 25 82 40 67 55 112)(11 96 26 81 41 66 56 111)(12 95 27 80 42 65 57 110)(13 94 28 79 43 64 58 109)(14 93 29 78 44 63 59 108)(15 92 30 77 45 62 60 107)
(2 20)(3 39)(4 58)(5 17)(6 36)(7 55)(8 14)(9 33)(10 52)(12 30)(13 49)(15 27)(16 46)(18 24)(19 43)(22 40)(23 59)(25 37)(26 56)(28 34)(29 53)(32 50)(35 47)(38 44)(42 60)(45 57)(48 54)(61 106)(62 65)(63 84)(64 103)(66 81)(67 100)(68 119)(69 78)(70 97)(71 116)(72 75)(73 94)(74 113)(76 91)(77 110)(79 88)(80 107)(82 85)(83 104)(86 101)(87 120)(89 98)(90 117)(92 95)(93 114)(96 111)(99 108)(102 105)(109 118)(112 115)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,106,16,91,31,76,46,61)(2,105,17,90,32,75,47,120)(3,104,18,89,33,74,48,119)(4,103,19,88,34,73,49,118)(5,102,20,87,35,72,50,117)(6,101,21,86,36,71,51,116)(7,100,22,85,37,70,52,115)(8,99,23,84,38,69,53,114)(9,98,24,83,39,68,54,113)(10,97,25,82,40,67,55,112)(11,96,26,81,41,66,56,111)(12,95,27,80,42,65,57,110)(13,94,28,79,43,64,58,109)(14,93,29,78,44,63,59,108)(15,92,30,77,45,62,60,107), (2,20)(3,39)(4,58)(5,17)(6,36)(7,55)(8,14)(9,33)(10,52)(12,30)(13,49)(15,27)(16,46)(18,24)(19,43)(22,40)(23,59)(25,37)(26,56)(28,34)(29,53)(32,50)(35,47)(38,44)(42,60)(45,57)(48,54)(61,106)(62,65)(63,84)(64,103)(66,81)(67,100)(68,119)(69,78)(70,97)(71,116)(72,75)(73,94)(74,113)(76,91)(77,110)(79,88)(80,107)(82,85)(83,104)(86,101)(87,120)(89,98)(90,117)(92,95)(93,114)(96,111)(99,108)(102,105)(109,118)(112,115)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,106,16,91,31,76,46,61)(2,105,17,90,32,75,47,120)(3,104,18,89,33,74,48,119)(4,103,19,88,34,73,49,118)(5,102,20,87,35,72,50,117)(6,101,21,86,36,71,51,116)(7,100,22,85,37,70,52,115)(8,99,23,84,38,69,53,114)(9,98,24,83,39,68,54,113)(10,97,25,82,40,67,55,112)(11,96,26,81,41,66,56,111)(12,95,27,80,42,65,57,110)(13,94,28,79,43,64,58,109)(14,93,29,78,44,63,59,108)(15,92,30,77,45,62,60,107), (2,20)(3,39)(4,58)(5,17)(6,36)(7,55)(8,14)(9,33)(10,52)(12,30)(13,49)(15,27)(16,46)(18,24)(19,43)(22,40)(23,59)(25,37)(26,56)(28,34)(29,53)(32,50)(35,47)(38,44)(42,60)(45,57)(48,54)(61,106)(62,65)(63,84)(64,103)(66,81)(67,100)(68,119)(69,78)(70,97)(71,116)(72,75)(73,94)(74,113)(76,91)(77,110)(79,88)(80,107)(82,85)(83,104)(86,101)(87,120)(89,98)(90,117)(92,95)(93,114)(96,111)(99,108)(102,105)(109,118)(112,115) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,106,16,91,31,76,46,61),(2,105,17,90,32,75,47,120),(3,104,18,89,33,74,48,119),(4,103,19,88,34,73,49,118),(5,102,20,87,35,72,50,117),(6,101,21,86,36,71,51,116),(7,100,22,85,37,70,52,115),(8,99,23,84,38,69,53,114),(9,98,24,83,39,68,54,113),(10,97,25,82,40,67,55,112),(11,96,26,81,41,66,56,111),(12,95,27,80,42,65,57,110),(13,94,28,79,43,64,58,109),(14,93,29,78,44,63,59,108),(15,92,30,77,45,62,60,107)], [(2,20),(3,39),(4,58),(5,17),(6,36),(7,55),(8,14),(9,33),(10,52),(12,30),(13,49),(15,27),(16,46),(18,24),(19,43),(22,40),(23,59),(25,37),(26,56),(28,34),(29,53),(32,50),(35,47),(38,44),(42,60),(45,57),(48,54),(61,106),(62,65),(63,84),(64,103),(66,81),(67,100),(68,119),(69,78),(70,97),(71,116),(72,75),(73,94),(74,113),(76,91),(77,110),(79,88),(80,107),(82,85),(83,104),(86,101),(87,120),(89,98),(90,117),(92,95),(93,114),(96,111),(99,108),(102,105),(109,118),(112,115)]])

57 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C5A5B6A6B6C6D6E6F6G8A8B10A10B10C10D10E10F10G10H12A12B15A15B20A20B20C20D20E20F20G20H20I20J30A···30F60A···60H
order1222223444556666666881010101010101010121215152020202020202020202030···3060···60
size11212202022212222222020202060602244121212124444222244121212124···44···4

57 irreducible representations

dim111111222222222222244444444
type+++++++++++++++++-+-+
imageC1C2C2C2C2C2S3D4D4D5D6D6D10D10D10C3⋊D4C3⋊D4C5⋊D4C5⋊D4C8⋊C22S3×D5D126C22C15⋊D4C2×S3×D5C15⋊D4D4⋊D10C60.36D4
kernelC60.36D4C15⋊D8C30.D4C60.7C4C6×D20C5×C4○D12C2×D20C60C2×C30C4○D12D20C2×C20Dic6D12C2×C12C20C2×C10C12C2×C6C15C2×C4C5C4C4C22C3C1
# reps122111111221222224412222248

Matrix representation of C60.36D4 in GL6(𝔽241)

22500000
189150000
007816300
007819700
000078163
000078197
,
30470000
2272110000
0078821329
00204163234109
009383163159
0061483778
,
24000000
02400000
001000
005124000
00124188443
00511778197

G:=sub<GL(6,GF(241))| [225,189,0,0,0,0,0,15,0,0,0,0,0,0,78,78,0,0,0,0,163,197,0,0,0,0,0,0,78,78,0,0,0,0,163,197],[30,227,0,0,0,0,47,211,0,0,0,0,0,0,78,204,93,6,0,0,82,163,83,148,0,0,132,234,163,37,0,0,9,109,159,78],[240,0,0,0,0,0,0,240,0,0,0,0,0,0,1,51,124,5,0,0,0,240,188,117,0,0,0,0,44,78,0,0,0,0,3,197] >;

C60.36D4 in GAP, Magma, Sage, TeX

C_{60}._{36}D_4
% in TeX

G:=Group("C60.36D4");
// GroupNames label

G:=SmallGroup(480,374);
// by ID

G=gap.SmallGroup(480,374);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,141,219,675,346,80,1356,18822]);
// Polycyclic

G:=Group<a,b,c|a^60=c^2=1,b^4=a^30,b*a*b^-1=a^-1,c*a*c=a^19,c*b*c=a^30*b^3>;
// generators/relations

׿
×
𝔽