Copied to
clipboard

G = D2021D6order 480 = 25·3·5

4th semidirect product of D20 and D6 acting via D6/C6=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D2021D6, C60.59D4, Dic1018D6, D12.35D10, C60.152C23, C4○D203S3, (C2×D12)⋊8D5, (C10×D12)⋊1C2, C15⋊D814C2, C54(D4⋊D6), C158(C8⋊C22), C30.74(C2×D4), (C2×C30).42D4, (C2×C20).86D6, C60.7C43C2, (C2×C12).87D10, C153C822C22, C20.D613C2, C34(D4.D10), (C3×D20)⋊28C22, C4.16(C15⋊D4), C12.82(C5⋊D4), C20.24(C3⋊D4), (C2×C60).24C22, C20.87(C22×S3), C12.87(C22×D5), (C5×D12).41C22, C22.9(C15⋊D4), (C3×Dic10)⋊24C22, (C2×C4).8(S3×D5), C4.125(C2×S3×D5), (C3×C4○D20)⋊1C2, C6.74(C2×C5⋊D4), C2.8(C2×C15⋊D4), C10.75(C2×C3⋊D4), (C2×C6).10(C5⋊D4), (C2×C10).52(C3⋊D4), SmallGroup(480,375)

Series: Derived Chief Lower central Upper central

C1C60 — D2021D6
C1C5C15C30C60C3×D20C15⋊D8 — D2021D6
C15C30C60 — D2021D6
C1C2C2×C4

Generators and relations for D2021D6
 G = < a,b,c,d | a20=b2=c6=d2=1, bab=a-1, ac=ca, dad=a11, cbc-1=a10b, dbd=a5b, dcd=c-1 >

Subgroups: 620 in 136 conjugacy classes, 44 normal (34 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, S3, C6, C6, C8, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C10, C12, C12, D6, C2×C6, C2×C6, C15, M4(2), D8, SD16, C2×D4, C4○D4, Dic5, C20, D10, C2×C10, C2×C10, C3⋊C8, D12, D12, C2×C12, C2×C12, C3×D4, C3×Q8, C22×S3, C5×S3, C3×D5, C30, C30, C8⋊C22, C52C8, Dic10, C4×D5, D20, C5⋊D4, C2×C20, C5×D4, C22×C10, C4.Dic3, D4⋊S3, Q82S3, C2×D12, C3×C4○D4, C3×Dic5, C60, C6×D5, S3×C10, C2×C30, C4.Dic5, D4⋊D5, D4.D5, C4○D20, D4×C10, D4⋊D6, C153C8, C3×Dic10, D5×C12, C3×D20, C3×C5⋊D4, C5×D12, C5×D12, C2×C60, S3×C2×C10, D4.D10, C15⋊D8, C20.D6, C60.7C4, C3×C4○D20, C10×D12, D2021D6
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2×D4, D10, C3⋊D4, C22×S3, C8⋊C22, C5⋊D4, C22×D5, C2×C3⋊D4, S3×D5, C2×C5⋊D4, D4⋊D6, C15⋊D4, C2×S3×D5, D4.D10, C2×C15⋊D4, D2021D6

Smallest permutation representation of D2021D6
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 96)(2 95)(3 94)(4 93)(5 92)(6 91)(7 90)(8 89)(9 88)(10 87)(11 86)(12 85)(13 84)(14 83)(15 82)(16 81)(17 100)(18 99)(19 98)(20 97)(21 79)(22 78)(23 77)(24 76)(25 75)(26 74)(27 73)(28 72)(29 71)(30 70)(31 69)(32 68)(33 67)(34 66)(35 65)(36 64)(37 63)(38 62)(39 61)(40 80)(41 111)(42 110)(43 109)(44 108)(45 107)(46 106)(47 105)(48 104)(49 103)(50 102)(51 101)(52 120)(53 119)(54 118)(55 117)(56 116)(57 115)(58 114)(59 113)(60 112)
(1 113 73)(2 114 74)(3 115 75)(4 116 76)(5 117 77)(6 118 78)(7 119 79)(8 120 80)(9 101 61)(10 102 62)(11 103 63)(12 104 64)(13 105 65)(14 106 66)(15 107 67)(16 108 68)(17 109 69)(18 110 70)(19 111 71)(20 112 72)(21 100 53 31 90 43)(22 81 54 32 91 44)(23 82 55 33 92 45)(24 83 56 34 93 46)(25 84 57 35 94 47)(26 85 58 36 95 48)(27 86 59 37 96 49)(28 87 60 38 97 50)(29 88 41 39 98 51)(30 89 42 40 99 52)
(1 73)(2 64)(3 75)(4 66)(5 77)(6 68)(7 79)(8 70)(9 61)(10 72)(11 63)(12 74)(13 65)(14 76)(15 67)(16 78)(17 69)(18 80)(19 71)(20 62)(21 85)(22 96)(23 87)(24 98)(25 89)(26 100)(27 91)(28 82)(29 93)(30 84)(31 95)(32 86)(33 97)(34 88)(35 99)(36 90)(37 81)(38 92)(39 83)(40 94)(41 56)(42 47)(43 58)(44 49)(45 60)(46 51)(48 53)(50 55)(52 57)(54 59)(102 112)(104 114)(106 116)(108 118)(110 120)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,96)(2,95)(3,94)(4,93)(5,92)(6,91)(7,90)(8,89)(9,88)(10,87)(11,86)(12,85)(13,84)(14,83)(15,82)(16,81)(17,100)(18,99)(19,98)(20,97)(21,79)(22,78)(23,77)(24,76)(25,75)(26,74)(27,73)(28,72)(29,71)(30,70)(31,69)(32,68)(33,67)(34,66)(35,65)(36,64)(37,63)(38,62)(39,61)(40,80)(41,111)(42,110)(43,109)(44,108)(45,107)(46,106)(47,105)(48,104)(49,103)(50,102)(51,101)(52,120)(53,119)(54,118)(55,117)(56,116)(57,115)(58,114)(59,113)(60,112), (1,113,73)(2,114,74)(3,115,75)(4,116,76)(5,117,77)(6,118,78)(7,119,79)(8,120,80)(9,101,61)(10,102,62)(11,103,63)(12,104,64)(13,105,65)(14,106,66)(15,107,67)(16,108,68)(17,109,69)(18,110,70)(19,111,71)(20,112,72)(21,100,53,31,90,43)(22,81,54,32,91,44)(23,82,55,33,92,45)(24,83,56,34,93,46)(25,84,57,35,94,47)(26,85,58,36,95,48)(27,86,59,37,96,49)(28,87,60,38,97,50)(29,88,41,39,98,51)(30,89,42,40,99,52), (1,73)(2,64)(3,75)(4,66)(5,77)(6,68)(7,79)(8,70)(9,61)(10,72)(11,63)(12,74)(13,65)(14,76)(15,67)(16,78)(17,69)(18,80)(19,71)(20,62)(21,85)(22,96)(23,87)(24,98)(25,89)(26,100)(27,91)(28,82)(29,93)(30,84)(31,95)(32,86)(33,97)(34,88)(35,99)(36,90)(37,81)(38,92)(39,83)(40,94)(41,56)(42,47)(43,58)(44,49)(45,60)(46,51)(48,53)(50,55)(52,57)(54,59)(102,112)(104,114)(106,116)(108,118)(110,120)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,96)(2,95)(3,94)(4,93)(5,92)(6,91)(7,90)(8,89)(9,88)(10,87)(11,86)(12,85)(13,84)(14,83)(15,82)(16,81)(17,100)(18,99)(19,98)(20,97)(21,79)(22,78)(23,77)(24,76)(25,75)(26,74)(27,73)(28,72)(29,71)(30,70)(31,69)(32,68)(33,67)(34,66)(35,65)(36,64)(37,63)(38,62)(39,61)(40,80)(41,111)(42,110)(43,109)(44,108)(45,107)(46,106)(47,105)(48,104)(49,103)(50,102)(51,101)(52,120)(53,119)(54,118)(55,117)(56,116)(57,115)(58,114)(59,113)(60,112), (1,113,73)(2,114,74)(3,115,75)(4,116,76)(5,117,77)(6,118,78)(7,119,79)(8,120,80)(9,101,61)(10,102,62)(11,103,63)(12,104,64)(13,105,65)(14,106,66)(15,107,67)(16,108,68)(17,109,69)(18,110,70)(19,111,71)(20,112,72)(21,100,53,31,90,43)(22,81,54,32,91,44)(23,82,55,33,92,45)(24,83,56,34,93,46)(25,84,57,35,94,47)(26,85,58,36,95,48)(27,86,59,37,96,49)(28,87,60,38,97,50)(29,88,41,39,98,51)(30,89,42,40,99,52), (1,73)(2,64)(3,75)(4,66)(5,77)(6,68)(7,79)(8,70)(9,61)(10,72)(11,63)(12,74)(13,65)(14,76)(15,67)(16,78)(17,69)(18,80)(19,71)(20,62)(21,85)(22,96)(23,87)(24,98)(25,89)(26,100)(27,91)(28,82)(29,93)(30,84)(31,95)(32,86)(33,97)(34,88)(35,99)(36,90)(37,81)(38,92)(39,83)(40,94)(41,56)(42,47)(43,58)(44,49)(45,60)(46,51)(48,53)(50,55)(52,57)(54,59)(102,112)(104,114)(106,116)(108,118)(110,120) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,96),(2,95),(3,94),(4,93),(5,92),(6,91),(7,90),(8,89),(9,88),(10,87),(11,86),(12,85),(13,84),(14,83),(15,82),(16,81),(17,100),(18,99),(19,98),(20,97),(21,79),(22,78),(23,77),(24,76),(25,75),(26,74),(27,73),(28,72),(29,71),(30,70),(31,69),(32,68),(33,67),(34,66),(35,65),(36,64),(37,63),(38,62),(39,61),(40,80),(41,111),(42,110),(43,109),(44,108),(45,107),(46,106),(47,105),(48,104),(49,103),(50,102),(51,101),(52,120),(53,119),(54,118),(55,117),(56,116),(57,115),(58,114),(59,113),(60,112)], [(1,113,73),(2,114,74),(3,115,75),(4,116,76),(5,117,77),(6,118,78),(7,119,79),(8,120,80),(9,101,61),(10,102,62),(11,103,63),(12,104,64),(13,105,65),(14,106,66),(15,107,67),(16,108,68),(17,109,69),(18,110,70),(19,111,71),(20,112,72),(21,100,53,31,90,43),(22,81,54,32,91,44),(23,82,55,33,92,45),(24,83,56,34,93,46),(25,84,57,35,94,47),(26,85,58,36,95,48),(27,86,59,37,96,49),(28,87,60,38,97,50),(29,88,41,39,98,51),(30,89,42,40,99,52)], [(1,73),(2,64),(3,75),(4,66),(5,77),(6,68),(7,79),(8,70),(9,61),(10,72),(11,63),(12,74),(13,65),(14,76),(15,67),(16,78),(17,69),(18,80),(19,71),(20,62),(21,85),(22,96),(23,87),(24,98),(25,89),(26,100),(27,91),(28,82),(29,93),(30,84),(31,95),(32,86),(33,97),(34,88),(35,99),(36,90),(37,81),(38,92),(39,83),(40,94),(41,56),(42,47),(43,58),(44,49),(45,60),(46,51),(48,53),(50,55),(52,57),(54,59),(102,112),(104,114),(106,116),(108,118),(110,120)]])

57 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C5A5B6A6B6C6D8A8B10A···10F10G···10N12A12B12C12D12E15A15B20A20B20C20D30A···30F60A···60H
order12222234445566668810···1010···10121212121215152020202030···3060···60
size112121220222202224202060602···212···1222420204444444···44···4

57 irreducible representations

dim111111222222222222244444444
type++++++++++++++++++-+-
imageC1C2C2C2C2C2S3D4D4D5D6D6D6D10D10C3⋊D4C3⋊D4C5⋊D4C5⋊D4C8⋊C22S3×D5D4⋊D6C15⋊D4C2×S3×D5C15⋊D4D4.D10D2021D6
kernelD2021D6C15⋊D8C20.D6C60.7C4C3×C4○D20C10×D12C4○D20C60C2×C30C2×D12Dic10D20C2×C20D12C2×C12C20C2×C10C12C2×C6C15C2×C4C5C4C4C22C3C1
# reps122111111211142224412222248

Matrix representation of D2021D6 in GL6(𝔽241)

100000
010000
0009100
00150000
00000143
0000980
,
100000
010000
00000143
0000980
0009100
00150000
,
240280000
12920000
001000
000100
00002400
00000240
,
22130000
1122390000
001000
00024000
000001
000010

G:=sub<GL(6,GF(241))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,150,0,0,0,0,91,0,0,0,0,0,0,0,0,98,0,0,0,0,143,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,150,0,0,0,0,91,0,0,0,0,98,0,0,0,0,143,0,0,0],[240,129,0,0,0,0,28,2,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,240,0,0,0,0,0,0,240],[2,112,0,0,0,0,213,239,0,0,0,0,0,0,1,0,0,0,0,0,0,240,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

D2021D6 in GAP, Magma, Sage, TeX

D_{20}\rtimes_{21}D_6
% in TeX

G:=Group("D20:21D6");
// GroupNames label

G:=SmallGroup(480,375);
// by ID

G=gap.SmallGroup(480,375);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,141,219,100,675,346,80,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^20=b^2=c^6=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^11,c*b*c^-1=a^10*b,d*b*d=a^5*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽