Copied to
clipboard

G = C408D6order 480 = 25·3·5

8th semidirect product of C40 and D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C408D6, D406S3, D202D6, C2411D10, D30.2D4, Dic62D10, D12.2D10, C12015C22, Dic15.2D4, C60.142C23, C86(S3×D5), (C3×D40)⋊9C2, C24⋊C23D5, C52(D8⋊S3), C6.31(D4×D5), C40⋊S35C2, C15⋊D811C2, C32(D40⋊C2), C156(C8⋊C22), C10.31(S3×D4), C30.12(C2×D4), D20⋊S38C2, C20⋊D610C2, C153C820C22, C30.D410C2, C2.9(C20⋊D6), (C3×D20)⋊17C22, C20.71(C22×S3), C12.71(C22×D5), (C5×Dic6)⋊15C22, (C5×D12).26C22, (C4×D15).31C22, C4.115(C2×S3×D5), (C5×C24⋊C2)⋊5C2, SmallGroup(480,334)

Series: Derived Chief Lower central Upper central

C1C60 — C408D6
C1C5C15C30C60C3×D20C20⋊D6 — C408D6
C15C30C60 — C408D6
C1C2C4C8

Generators and relations for C408D6
 G = < a,b,c | a40=b6=c2=1, bab-1=a-1, cac=a29, cbc=b-1 >

Subgroups: 956 in 136 conjugacy classes, 38 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C6, C8, C8, C2×C4, D4, Q8, C23, D5, C10, C10, Dic3, C12, D6, C2×C6, C15, M4(2), D8, SD16, C2×D4, C4○D4, Dic5, C20, C20, D10, C2×C10, C3⋊C8, C24, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C3×D4, C22×S3, C5×S3, C3×D5, D15, C30, C8⋊C22, C52C8, C40, C4×D5, D20, D20, C5⋊D4, C5×D4, C5×Q8, C22×D5, C8⋊S3, C24⋊C2, D4⋊S3, D4.S3, C3×D8, S3×D4, D42S3, C5×Dic3, Dic15, C60, S3×D5, C6×D5, S3×C10, D30, C8⋊D5, D40, D4⋊D5, Q8⋊D5, C5×SD16, D4×D5, Q82D5, D8⋊S3, C153C8, C120, D5×Dic3, C15⋊D4, C3⋊D20, C3×D20, C5×Dic6, C5×D12, C4×D15, C2×S3×D5, D40⋊C2, C15⋊D8, C30.D4, C3×D40, C5×C24⋊C2, C40⋊S3, D20⋊S3, C20⋊D6, C408D6
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2×D4, D10, C22×S3, C8⋊C22, C22×D5, S3×D4, S3×D5, D4×D5, D8⋊S3, C2×S3×D5, D40⋊C2, C20⋊D6, C408D6

Smallest permutation representation of C408D6
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 106 51)(2 105 52 40 107 50)(3 104 53 39 108 49)(4 103 54 38 109 48)(5 102 55 37 110 47)(6 101 56 36 111 46)(7 100 57 35 112 45)(8 99 58 34 113 44)(9 98 59 33 114 43)(10 97 60 32 115 42)(11 96 61 31 116 41)(12 95 62 30 117 80)(13 94 63 29 118 79)(14 93 64 28 119 78)(15 92 65 27 120 77)(16 91 66 26 81 76)(17 90 67 25 82 75)(18 89 68 24 83 74)(19 88 69 23 84 73)(20 87 70 22 85 72)(21 86 71)
(1 51)(2 80)(3 69)(4 58)(5 47)(6 76)(7 65)(8 54)(9 43)(10 72)(11 61)(12 50)(13 79)(14 68)(15 57)(16 46)(17 75)(18 64)(19 53)(20 42)(21 71)(22 60)(23 49)(24 78)(25 67)(26 56)(27 45)(28 74)(29 63)(30 52)(31 41)(32 70)(33 59)(34 48)(35 77)(36 66)(37 55)(38 44)(39 73)(40 62)(81 101)(82 90)(83 119)(84 108)(85 97)(87 115)(88 104)(89 93)(91 111)(92 100)(94 118)(95 107)(98 114)(99 103)(102 110)(105 117)(109 113)(112 120)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,106,51)(2,105,52,40,107,50)(3,104,53,39,108,49)(4,103,54,38,109,48)(5,102,55,37,110,47)(6,101,56,36,111,46)(7,100,57,35,112,45)(8,99,58,34,113,44)(9,98,59,33,114,43)(10,97,60,32,115,42)(11,96,61,31,116,41)(12,95,62,30,117,80)(13,94,63,29,118,79)(14,93,64,28,119,78)(15,92,65,27,120,77)(16,91,66,26,81,76)(17,90,67,25,82,75)(18,89,68,24,83,74)(19,88,69,23,84,73)(20,87,70,22,85,72)(21,86,71), (1,51)(2,80)(3,69)(4,58)(5,47)(6,76)(7,65)(8,54)(9,43)(10,72)(11,61)(12,50)(13,79)(14,68)(15,57)(16,46)(17,75)(18,64)(19,53)(20,42)(21,71)(22,60)(23,49)(24,78)(25,67)(26,56)(27,45)(28,74)(29,63)(30,52)(31,41)(32,70)(33,59)(34,48)(35,77)(36,66)(37,55)(38,44)(39,73)(40,62)(81,101)(82,90)(83,119)(84,108)(85,97)(87,115)(88,104)(89,93)(91,111)(92,100)(94,118)(95,107)(98,114)(99,103)(102,110)(105,117)(109,113)(112,120)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,106,51)(2,105,52,40,107,50)(3,104,53,39,108,49)(4,103,54,38,109,48)(5,102,55,37,110,47)(6,101,56,36,111,46)(7,100,57,35,112,45)(8,99,58,34,113,44)(9,98,59,33,114,43)(10,97,60,32,115,42)(11,96,61,31,116,41)(12,95,62,30,117,80)(13,94,63,29,118,79)(14,93,64,28,119,78)(15,92,65,27,120,77)(16,91,66,26,81,76)(17,90,67,25,82,75)(18,89,68,24,83,74)(19,88,69,23,84,73)(20,87,70,22,85,72)(21,86,71), (1,51)(2,80)(3,69)(4,58)(5,47)(6,76)(7,65)(8,54)(9,43)(10,72)(11,61)(12,50)(13,79)(14,68)(15,57)(16,46)(17,75)(18,64)(19,53)(20,42)(21,71)(22,60)(23,49)(24,78)(25,67)(26,56)(27,45)(28,74)(29,63)(30,52)(31,41)(32,70)(33,59)(34,48)(35,77)(36,66)(37,55)(38,44)(39,73)(40,62)(81,101)(82,90)(83,119)(84,108)(85,97)(87,115)(88,104)(89,93)(91,111)(92,100)(94,118)(95,107)(98,114)(99,103)(102,110)(105,117)(109,113)(112,120) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,106,51),(2,105,52,40,107,50),(3,104,53,39,108,49),(4,103,54,38,109,48),(5,102,55,37,110,47),(6,101,56,36,111,46),(7,100,57,35,112,45),(8,99,58,34,113,44),(9,98,59,33,114,43),(10,97,60,32,115,42),(11,96,61,31,116,41),(12,95,62,30,117,80),(13,94,63,29,118,79),(14,93,64,28,119,78),(15,92,65,27,120,77),(16,91,66,26,81,76),(17,90,67,25,82,75),(18,89,68,24,83,74),(19,88,69,23,84,73),(20,87,70,22,85,72),(21,86,71)], [(1,51),(2,80),(3,69),(4,58),(5,47),(6,76),(7,65),(8,54),(9,43),(10,72),(11,61),(12,50),(13,79),(14,68),(15,57),(16,46),(17,75),(18,64),(19,53),(20,42),(21,71),(22,60),(23,49),(24,78),(25,67),(26,56),(27,45),(28,74),(29,63),(30,52),(31,41),(32,70),(33,59),(34,48),(35,77),(36,66),(37,55),(38,44),(39,73),(40,62),(81,101),(82,90),(83,119),(84,108),(85,97),(87,115),(88,104),(89,93),(91,111),(92,100),(94,118),(95,107),(98,114),(99,103),(102,110),(105,117),(109,113),(112,120)]])

48 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C5A5B6A6B6C8A8B10A10B10C10D 12 15A15B20A20B20C20D24A24B30A30B40A40B40C40D60A60B60C60D120A···120H
order122222344455666881010101012151520202020242430304040404060606060120···120
size111220203022123022240404602224244444424244444444444444···4

48 irreducible representations

dim11111111222222222444444444
type+++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D4D5D6D6D10D10D10C8⋊C22S3×D4S3×D5D4×D5D8⋊S3C2×S3×D5D40⋊C2C20⋊D6C408D6
kernelC408D6C15⋊D8C30.D4C3×D40C5×C24⋊C2C40⋊S3D20⋊S3C20⋊D6D40Dic15D30C24⋊C2C40D20C24Dic6D12C15C10C8C6C5C4C3C2C1
# reps11111111111212222112222448

Matrix representation of C408D6 in GL8(𝔽241)

240189000000
5252000000
002401890000
0052520000
000023729128220
00002122957149
000011212900
00007222400
,
240024000000
5215210000
10000000
189240000000
00001000
00005124000
00001131495251
00003692188189
,
240024000000
5215210000
00100000
001892400000
00001000
00005124000
000000189190
0000005352

G:=sub<GL(8,GF(241))| [240,52,0,0,0,0,0,0,189,52,0,0,0,0,0,0,0,0,240,52,0,0,0,0,0,0,189,52,0,0,0,0,0,0,0,0,237,212,112,72,0,0,0,0,29,29,129,224,0,0,0,0,128,57,0,0,0,0,0,0,220,149,0,0],[240,52,1,189,0,0,0,0,0,1,0,240,0,0,0,0,240,52,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,51,113,36,0,0,0,0,0,240,149,92,0,0,0,0,0,0,52,188,0,0,0,0,0,0,51,189],[240,52,0,0,0,0,0,0,0,1,0,0,0,0,0,0,240,52,1,189,0,0,0,0,0,1,0,240,0,0,0,0,0,0,0,0,1,51,0,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,189,53,0,0,0,0,0,0,190,52] >;

C408D6 in GAP, Magma, Sage, TeX

C_{40}\rtimes_8D_6
% in TeX

G:=Group("C40:8D6");
// GroupNames label

G:=SmallGroup(480,334);
// by ID

G=gap.SmallGroup(480,334);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,254,303,142,675,346,80,1356,18822]);
// Polycyclic

G:=Group<a,b,c|a^40=b^6=c^2=1,b*a*b^-1=a^-1,c*a*c=a^29,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽