Extensions 1→N→G→Q→1 with N=D10⋊C4 and Q=C6

Direct product G=N×Q with N=D10⋊C4 and Q=C6
dρLabelID
C6×D10⋊C4240C6xD10:C4480,720

Semidirect products G=N:Q with N=D10⋊C4 and Q=C6
extensionφ:Q→Out NdρLabelID
D10⋊C41C6 = C3×C4.D20φ: C6/C3C2 ⊆ Out D10⋊C4240D10:C4:1C6480,668
D10⋊C42C6 = C3×C23.23D10φ: C6/C3C2 ⊆ Out D10⋊C4240D10:C4:2C6480,722
D10⋊C43C6 = C3×C207D4φ: C6/C3C2 ⊆ Out D10⋊C4240D10:C4:3C6480,723
D10⋊C44C6 = C3×C22⋊D20φ: C6/C3C2 ⊆ Out D10⋊C4120D10:C4:4C6480,675
D10⋊C45C6 = C3×D10.12D4φ: C6/C3C2 ⊆ Out D10⋊C4240D10:C4:5C6480,676
D10⋊C46C6 = C3×C22.D20φ: C6/C3C2 ⊆ Out D10⋊C4240D10:C4:6C6480,679
D10⋊C47C6 = C3×C4⋊D20φ: C6/C3C2 ⊆ Out D10⋊C4240D10:C4:7C6480,688
D10⋊C48C6 = C3×D5×C22⋊C4φ: C6/C3C2 ⊆ Out D10⋊C4120D10:C4:8C6480,673
D10⋊C49C6 = C3×Dic54D4φ: C6/C3C2 ⊆ Out D10⋊C4240D10:C4:9C6480,674
D10⋊C410C6 = C3×D10⋊D4φ: C6/C3C2 ⊆ Out D10⋊C4240D10:C4:10C6480,677
D10⋊C411C6 = C3×Dic5.5D4φ: C6/C3C2 ⊆ Out D10⋊C4240D10:C4:11C6480,678
D10⋊C412C6 = C3×D208C4φ: C6/C3C2 ⊆ Out D10⋊C4240D10:C4:12C6480,686
D10⋊C413C6 = C3×D10.13D4φ: C6/C3C2 ⊆ Out D10⋊C4240D10:C4:13C6480,687
D10⋊C414C6 = C3×C23⋊D10φ: C6/C3C2 ⊆ Out D10⋊C4120D10:C4:14C6480,730
D10⋊C415C6 = C3×Dic5⋊D4φ: C6/C3C2 ⊆ Out D10⋊C4240D10:C4:15C6480,732
D10⋊C416C6 = C3×C20.23D4φ: C6/C3C2 ⊆ Out D10⋊C4240D10:C4:16C6480,740
D10⋊C417C6 = C12×D20φ: trivial image240D10:C4:17C6480,666
D10⋊C418C6 = C12×C5⋊D4φ: trivial image240D10:C4:18C6480,721

Non-split extensions G=N.Q with N=D10⋊C4 and Q=C6
extensionφ:Q→Out NdρLabelID
D10⋊C4.1C6 = C3×C422D5φ: C6/C3C2 ⊆ Out D10⋊C4240D10:C4.1C6480,669
D10⋊C4.2C6 = C3×D102Q8φ: C6/C3C2 ⊆ Out D10⋊C4240D10:C4.2C6480,690
D10⋊C4.3C6 = C3×C4⋊C47D5φ: C6/C3C2 ⊆ Out D10⋊C4240D10:C4.3C6480,685
D10⋊C4.4C6 = C3×C4⋊C4⋊D5φ: C6/C3C2 ⊆ Out D10⋊C4240D10:C4.4C6480,691
D10⋊C4.5C6 = C3×D10⋊Q8φ: C6/C3C2 ⊆ Out D10⋊C4240D10:C4.5C6480,689
D10⋊C4.6C6 = C3×D103Q8φ: C6/C3C2 ⊆ Out D10⋊C4240D10:C4.6C6480,739
D10⋊C4.7C6 = C3×C42⋊D5φ: trivial image240D10:C4.7C6480,665

׿
×
𝔽