Copied to
clipboard

G = D10⋊C4order 80 = 24·5

1st semidirect product of D10 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D101C4, C10.6D4, C2.2D20, C22.6D10, (C2×C4)⋊1D5, (C2×C20)⋊1C2, C2.5(C4×D5), C52(C22⋊C4), C10.12(C2×C4), (C2×Dic5)⋊1C2, C2.2(C5⋊D4), (C2×C10).6C22, (C22×D5).1C2, SmallGroup(80,14)

Series: Derived Chief Lower central Upper central

C1C10 — D10⋊C4
C1C5C10C2×C10C22×D5 — D10⋊C4
C5C10 — D10⋊C4
C1C22C2×C4

Generators and relations for D10⋊C4
 G = < a,b,c | a10=b2=c4=1, bab=a-1, ac=ca, cbc-1=a5b >

10C2
10C2
2C4
5C22
5C22
10C4
10C22
10C22
2D5
2D5
5C2×C4
5C23
2D10
2D10
2Dic5
2C20
5C22⋊C4

Character table of D10⋊C4

 class 12A2B2C2D2E4A4B4C4D5A5B10A10B10C10D10E10F20A20B20C20D20E20F20G20H
 size 111110102210102222222222222222
ρ111111111111111111111111111    trivial
ρ21111-1-111-1-11111111111111111    linear of order 2
ρ31111-1-1-1-11111111111-1-1-1-1-1-1-1-1    linear of order 2
ρ4111111-1-1-1-111111111-1-1-1-1-1-1-1-1    linear of order 2
ρ511-1-1-11-iii-i11-11-1-1-11iiii-i-i-i-i    linear of order 4
ρ611-1-11-1-ii-ii11-11-1-1-11iiii-i-i-i-i    linear of order 4
ρ711-1-11-1i-ii-i11-11-1-1-11-i-i-i-iiiii    linear of order 4
ρ811-1-1-11i-i-ii11-11-1-1-11-i-i-i-iiiii    linear of order 4
ρ92-22-200000022-2-2-222-200000000    orthogonal lifted from D4
ρ102-2-22000000222-22-2-2-200000000    orthogonal lifted from D4
ρ11222200-2-200-1-5/2-1+5/2-1-5/2-1+5/2-1+5/2-1-5/2-1+5/2-1-5/21+5/21-5/21-5/21+5/21-5/21-5/21+5/21+5/2    orthogonal lifted from D10
ρ122-2-22000000-1+5/2-1-5/2-1+5/21+5/2-1-5/21-5/21+5/21-5/243ζ5443ζ5ζ4ζ534ζ524ζ534ζ52ζ43ζ5443ζ54ζ534ζ52ζ4ζ534ζ5243ζ5443ζ5ζ43ζ5443ζ5    orthogonal lifted from D20
ρ13222200-2-200-1+5/2-1-5/2-1+5/2-1-5/2-1-5/2-1+5/2-1-5/2-1+5/21-5/21+5/21+5/21-5/21+5/21+5/21-5/21-5/2    orthogonal lifted from D10
ρ142222002200-1-5/2-1+5/2-1-5/2-1+5/2-1+5/2-1-5/2-1+5/2-1-5/2-1-5/2-1+5/2-1+5/2-1-5/2-1+5/2-1+5/2-1-5/2-1-5/2    orthogonal lifted from D5
ρ152222002200-1+5/2-1-5/2-1+5/2-1-5/2-1-5/2-1+5/2-1-5/2-1+5/2-1+5/2-1-5/2-1-5/2-1+5/2-1-5/2-1-5/2-1+5/2-1+5/2    orthogonal lifted from D5
ρ162-2-22000000-1-5/2-1+5/2-1-5/21-5/2-1+5/21+5/21-5/21+5/24ζ534ζ5243ζ5443ζ5ζ43ζ5443ζ5ζ4ζ534ζ52ζ43ζ5443ζ543ζ5443ζ54ζ534ζ52ζ4ζ534ζ52    orthogonal lifted from D20
ρ172-2-22000000-1-5/2-1+5/2-1-5/21-5/2-1+5/21+5/21-5/21+5/2ζ4ζ534ζ52ζ43ζ5443ζ543ζ5443ζ54ζ534ζ5243ζ5443ζ5ζ43ζ5443ζ5ζ4ζ534ζ524ζ534ζ52    orthogonal lifted from D20
ρ182-2-22000000-1+5/2-1-5/2-1+5/21+5/2-1-5/21-5/21+5/21-5/2ζ43ζ5443ζ54ζ534ζ52ζ4ζ534ζ5243ζ5443ζ5ζ4ζ534ζ524ζ534ζ52ζ43ζ5443ζ543ζ5443ζ5    orthogonal lifted from D20
ρ192-22-2000000-1+5/2-1-5/21-5/21+5/21+5/2-1+5/2-1-5/21-5/2ζ545ζ53525352545ζ53525352545ζ545    complex lifted from C5⋊D4
ρ202-22-2000000-1-5/2-1+5/21+5/21-5/21-5/2-1-5/2-1+5/21+5/2ζ5352545ζ5455352545ζ5455352ζ5352    complex lifted from C5⋊D4
ρ2122-2-200-2i2i00-1-5/2-1+5/21+5/2-1+5/21-5/21+5/21-5/2-1-5/2ζ4ζ534ζ52ζ4ζ544ζ5ζ4ζ544ζ5ζ4ζ534ζ52ζ43ζ5443ζ5ζ43ζ5443ζ5ζ43ζ5343ζ52ζ43ζ5343ζ52    complex lifted from C4×D5
ρ222-22-2000000-1+5/2-1-5/21-5/21+5/21+5/2-1+5/2-1-5/21-5/25455352ζ5352ζ5455352ζ5352ζ545545    complex lifted from C5⋊D4
ρ2322-2-2002i-2i00-1-5/2-1+5/21+5/2-1+5/21-5/21+5/21-5/2-1-5/2ζ43ζ5343ζ52ζ43ζ5443ζ5ζ43ζ5443ζ5ζ43ζ5343ζ52ζ4ζ544ζ5ζ4ζ544ζ5ζ4ζ534ζ52ζ4ζ534ζ52    complex lifted from C4×D5
ρ242-22-2000000-1-5/2-1+5/21+5/21-5/21-5/2-1-5/2-1+5/21+5/25352ζ545545ζ5352ζ545545ζ53525352    complex lifted from C5⋊D4
ρ2522-2-200-2i2i00-1+5/2-1-5/21-5/2-1-5/21+5/21-5/21+5/2-1+5/2ζ4ζ544ζ5ζ4ζ534ζ52ζ4ζ534ζ52ζ4ζ544ζ5ζ43ζ5343ζ52ζ43ζ5343ζ52ζ43ζ5443ζ5ζ43ζ5443ζ5    complex lifted from C4×D5
ρ2622-2-2002i-2i00-1+5/2-1-5/21-5/2-1-5/21+5/21-5/21+5/2-1+5/2ζ43ζ5443ζ5ζ43ζ5343ζ52ζ43ζ5343ζ52ζ43ζ5443ζ5ζ4ζ534ζ52ζ4ζ534ζ52ζ4ζ544ζ5ζ4ζ544ζ5    complex lifted from C4×D5

Smallest permutation representation of D10⋊C4
On 40 points
Generators in S40
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)
(1 12)(2 11)(3 20)(4 19)(5 18)(6 17)(7 16)(8 15)(9 14)(10 13)(21 39)(22 38)(23 37)(24 36)(25 35)(26 34)(27 33)(28 32)(29 31)(30 40)
(1 33 13 23)(2 34 14 24)(3 35 15 25)(4 36 16 26)(5 37 17 27)(6 38 18 28)(7 39 19 29)(8 40 20 30)(9 31 11 21)(10 32 12 22)

G:=sub<Sym(40)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,12)(2,11)(3,20)(4,19)(5,18)(6,17)(7,16)(8,15)(9,14)(10,13)(21,39)(22,38)(23,37)(24,36)(25,35)(26,34)(27,33)(28,32)(29,31)(30,40), (1,33,13,23)(2,34,14,24)(3,35,15,25)(4,36,16,26)(5,37,17,27)(6,38,18,28)(7,39,19,29)(8,40,20,30)(9,31,11,21)(10,32,12,22)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,12)(2,11)(3,20)(4,19)(5,18)(6,17)(7,16)(8,15)(9,14)(10,13)(21,39)(22,38)(23,37)(24,36)(25,35)(26,34)(27,33)(28,32)(29,31)(30,40), (1,33,13,23)(2,34,14,24)(3,35,15,25)(4,36,16,26)(5,37,17,27)(6,38,18,28)(7,39,19,29)(8,40,20,30)(9,31,11,21)(10,32,12,22) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40)], [(1,12),(2,11),(3,20),(4,19),(5,18),(6,17),(7,16),(8,15),(9,14),(10,13),(21,39),(22,38),(23,37),(24,36),(25,35),(26,34),(27,33),(28,32),(29,31),(30,40)], [(1,33,13,23),(2,34,14,24),(3,35,15,25),(4,36,16,26),(5,37,17,27),(6,38,18,28),(7,39,19,29),(8,40,20,30),(9,31,11,21),(10,32,12,22)])

D10⋊C4 is a maximal subgroup of
C42⋊D5  C4×D20  C4.D20  C422D5  D5×C22⋊C4  Dic54D4  C22⋊D20  D10.12D4  D10⋊D4  Dic5.5D4  C22.D20  C4⋊C47D5  D208C4  D10.13D4  C4⋊D20  D10⋊Q8  D102Q8  C4⋊C4⋊D5  C4×C5⋊D4  C23.23D10  C207D4  C23⋊D10  Dic5⋊D4  D103Q8  C20.23D4  D10⋊Dic3  D304C4  D303C4  D50⋊C4  D10⋊Dic5  C10.D20  C10.11D20  D5.D20
D10⋊C4 is a maximal quotient of
D204C4  C23.1D10  D206C4  C10.Q16  C20.44D4  D101C8  D205C4  C20.46D4  C4.12D20  D207C4  C10.10C42  D10⋊Dic3  D304C4  D303C4  D50⋊C4  D10⋊Dic5  C10.D20  C10.11D20  D5.D20

Matrix representation of D10⋊C4 in GL3(𝔽41) generated by

100
03434
071
,
100
03434
017
,
900
01740
0124
G:=sub<GL(3,GF(41))| [1,0,0,0,34,7,0,34,1],[1,0,0,0,34,1,0,34,7],[9,0,0,0,17,1,0,40,24] >;

D10⋊C4 in GAP, Magma, Sage, TeX

D_{10}\rtimes C_4
% in TeX

G:=Group("D10:C4");
// GroupNames label

G:=SmallGroup(80,14);
// by ID

G=gap.SmallGroup(80,14);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-5,101,26,1604]);
// Polycyclic

G:=Group<a,b,c|a^10=b^2=c^4=1,b*a*b=a^-1,a*c=c*a,c*b*c^-1=a^5*b>;
// generators/relations

Export

Subgroup lattice of D10⋊C4 in TeX
Character table of D10⋊C4 in TeX

׿
×
𝔽