metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D10⋊1C4, C10.6D4, C2.2D20, C22.6D10, (C2×C4)⋊1D5, (C2×C20)⋊1C2, C2.5(C4×D5), C5⋊2(C22⋊C4), C10.12(C2×C4), (C2×Dic5)⋊1C2, C2.2(C5⋊D4), (C2×C10).6C22, (C22×D5).1C2, SmallGroup(80,14)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D10⋊C4
G = < a,b,c | a10=b2=c4=1, bab=a-1, ac=ca, cbc-1=a5b >
Character table of D10⋊C4
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 5A | 5B | 10A | 10B | 10C | 10D | 10E | 10F | 20A | 20B | 20C | 20D | 20E | 20F | 20G | 20H | |
size | 1 | 1 | 1 | 1 | 10 | 10 | 2 | 2 | 10 | 10 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | -1 | 1 | -i | i | i | -i | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | i | i | i | i | -i | -i | -i | -i | linear of order 4 |
ρ6 | 1 | 1 | -1 | -1 | 1 | -1 | -i | i | -i | i | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | i | i | i | i | -i | -i | -i | -i | linear of order 4 |
ρ7 | 1 | 1 | -1 | -1 | 1 | -1 | i | -i | i | -i | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -i | -i | -i | -i | i | i | i | i | linear of order 4 |
ρ8 | 1 | 1 | -1 | -1 | -1 | 1 | i | -i | -i | i | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -i | -i | -i | -i | i | i | i | i | linear of order 4 |
ρ9 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | -2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ12 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | -ζ43ζ54+ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | ζ43ζ54-ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | orthogonal lifted from D20 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ14 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ15 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ16 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | -ζ4ζ53+ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | ζ4ζ53-ζ4ζ52 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | orthogonal lifted from D20 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | ζ4ζ53-ζ4ζ52 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | orthogonal lifted from D20 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | ζ43ζ54-ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | orthogonal lifted from D20 |
ρ19 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | ζ54-ζ5 | ζ53-ζ52 | -ζ53+ζ52 | -ζ54+ζ5 | ζ53-ζ52 | -ζ53+ζ52 | -ζ54+ζ5 | ζ54-ζ5 | complex lifted from C5⋊D4 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | ζ53-ζ52 | -ζ54+ζ5 | ζ54-ζ5 | -ζ53+ζ52 | -ζ54+ζ5 | ζ54-ζ5 | -ζ53+ζ52 | ζ53-ζ52 | complex lifted from C5⋊D4 |
ρ21 | 2 | 2 | -2 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | -1-√5/2 | -1+√5/2 | 1+√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | -1-√5/2 | ζ4ζ53+ζ4ζ52 | ζ4ζ54+ζ4ζ5 | ζ4ζ54+ζ4ζ5 | ζ4ζ53+ζ4ζ52 | ζ43ζ54+ζ43ζ5 | ζ43ζ54+ζ43ζ5 | ζ43ζ53+ζ43ζ52 | ζ43ζ53+ζ43ζ52 | complex lifted from C4×D5 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | -ζ54+ζ5 | -ζ53+ζ52 | ζ53-ζ52 | ζ54-ζ5 | -ζ53+ζ52 | ζ53-ζ52 | ζ54-ζ5 | -ζ54+ζ5 | complex lifted from C5⋊D4 |
ρ23 | 2 | 2 | -2 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | -1-√5/2 | -1+√5/2 | 1+√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | -1-√5/2 | ζ43ζ53+ζ43ζ52 | ζ43ζ54+ζ43ζ5 | ζ43ζ54+ζ43ζ5 | ζ43ζ53+ζ43ζ52 | ζ4ζ54+ζ4ζ5 | ζ4ζ54+ζ4ζ5 | ζ4ζ53+ζ4ζ52 | ζ4ζ53+ζ4ζ52 | complex lifted from C4×D5 |
ρ24 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | -ζ53+ζ52 | ζ54-ζ5 | -ζ54+ζ5 | ζ53-ζ52 | ζ54-ζ5 | -ζ54+ζ5 | ζ53-ζ52 | -ζ53+ζ52 | complex lifted from C5⋊D4 |
ρ25 | 2 | 2 | -2 | -2 | 0 | 0 | -2i | 2i | 0 | 0 | -1+√5/2 | -1-√5/2 | 1-√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | -1+√5/2 | ζ4ζ54+ζ4ζ5 | ζ4ζ53+ζ4ζ52 | ζ4ζ53+ζ4ζ52 | ζ4ζ54+ζ4ζ5 | ζ43ζ53+ζ43ζ52 | ζ43ζ53+ζ43ζ52 | ζ43ζ54+ζ43ζ5 | ζ43ζ54+ζ43ζ5 | complex lifted from C4×D5 |
ρ26 | 2 | 2 | -2 | -2 | 0 | 0 | 2i | -2i | 0 | 0 | -1+√5/2 | -1-√5/2 | 1-√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | -1+√5/2 | ζ43ζ54+ζ43ζ5 | ζ43ζ53+ζ43ζ52 | ζ43ζ53+ζ43ζ52 | ζ43ζ54+ζ43ζ5 | ζ4ζ53+ζ4ζ52 | ζ4ζ53+ζ4ζ52 | ζ4ζ54+ζ4ζ5 | ζ4ζ54+ζ4ζ5 | complex lifted from C4×D5 |
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)
(1 12)(2 11)(3 20)(4 19)(5 18)(6 17)(7 16)(8 15)(9 14)(10 13)(21 39)(22 38)(23 37)(24 36)(25 35)(26 34)(27 33)(28 32)(29 31)(30 40)
(1 33 13 23)(2 34 14 24)(3 35 15 25)(4 36 16 26)(5 37 17 27)(6 38 18 28)(7 39 19 29)(8 40 20 30)(9 31 11 21)(10 32 12 22)
G:=sub<Sym(40)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,12)(2,11)(3,20)(4,19)(5,18)(6,17)(7,16)(8,15)(9,14)(10,13)(21,39)(22,38)(23,37)(24,36)(25,35)(26,34)(27,33)(28,32)(29,31)(30,40), (1,33,13,23)(2,34,14,24)(3,35,15,25)(4,36,16,26)(5,37,17,27)(6,38,18,28)(7,39,19,29)(8,40,20,30)(9,31,11,21)(10,32,12,22)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40), (1,12)(2,11)(3,20)(4,19)(5,18)(6,17)(7,16)(8,15)(9,14)(10,13)(21,39)(22,38)(23,37)(24,36)(25,35)(26,34)(27,33)(28,32)(29,31)(30,40), (1,33,13,23)(2,34,14,24)(3,35,15,25)(4,36,16,26)(5,37,17,27)(6,38,18,28)(7,39,19,29)(8,40,20,30)(9,31,11,21)(10,32,12,22) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40)], [(1,12),(2,11),(3,20),(4,19),(5,18),(6,17),(7,16),(8,15),(9,14),(10,13),(21,39),(22,38),(23,37),(24,36),(25,35),(26,34),(27,33),(28,32),(29,31),(30,40)], [(1,33,13,23),(2,34,14,24),(3,35,15,25),(4,36,16,26),(5,37,17,27),(6,38,18,28),(7,39,19,29),(8,40,20,30),(9,31,11,21),(10,32,12,22)]])
D10⋊C4 is a maximal subgroup of
C42⋊D5 C4×D20 C4.D20 C42⋊2D5 D5×C22⋊C4 Dic5⋊4D4 C22⋊D20 D10.12D4 D10⋊D4 Dic5.5D4 C22.D20 C4⋊C4⋊7D5 D20⋊8C4 D10.13D4 C4⋊D20 D10⋊Q8 D10⋊2Q8 C4⋊C4⋊D5 C4×C5⋊D4 C23.23D10 C20⋊7D4 C23⋊D10 Dic5⋊D4 D10⋊3Q8 C20.23D4 D10⋊Dic3 D30⋊4C4 D30⋊3C4 D50⋊C4 D10⋊Dic5 C10.D20 C10.11D20 D5.D20
D10⋊C4 is a maximal quotient of
D20⋊4C4 C23.1D10 D20⋊6C4 C10.Q16 C20.44D4 D10⋊1C8 D20⋊5C4 C20.46D4 C4.12D20 D20⋊7C4 C10.10C42 D10⋊Dic3 D30⋊4C4 D30⋊3C4 D50⋊C4 D10⋊Dic5 C10.D20 C10.11D20 D5.D20
Matrix representation of D10⋊C4 ►in GL3(𝔽41) generated by
1 | 0 | 0 |
0 | 34 | 34 |
0 | 7 | 1 |
1 | 0 | 0 |
0 | 34 | 34 |
0 | 1 | 7 |
9 | 0 | 0 |
0 | 17 | 40 |
0 | 1 | 24 |
G:=sub<GL(3,GF(41))| [1,0,0,0,34,7,0,34,1],[1,0,0,0,34,1,0,34,7],[9,0,0,0,17,1,0,40,24] >;
D10⋊C4 in GAP, Magma, Sage, TeX
D_{10}\rtimes C_4
% in TeX
G:=Group("D10:C4");
// GroupNames label
G:=SmallGroup(80,14);
// by ID
G=gap.SmallGroup(80,14);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-5,101,26,1604]);
// Polycyclic
G:=Group<a,b,c|a^10=b^2=c^4=1,b*a*b=a^-1,a*c=c*a,c*b*c^-1=a^5*b>;
// generators/relations
Export
Subgroup lattice of D10⋊C4 in TeX
Character table of D10⋊C4 in TeX