Extensions 1→N→G→Q→1 with N=D4⋊S3 and Q=D5

Direct product G=N×Q with N=D4⋊S3 and Q=D5
dρLabelID
D5×D4⋊S31208+D5xD4:S3480,553

Semidirect products G=N:Q with N=D4⋊S3 and Q=D5
extensionφ:Q→Out NdρLabelID
D4⋊S31D5 = Dic103D6φ: D5/C5C2 ⊆ Out D4⋊S31208+D4:S3:1D5480,554
D4⋊S32D5 = D15⋊D8φ: D5/C5C2 ⊆ Out D4⋊S31208+D4:S3:2D5480,557
D4⋊S33D5 = D30.8D4φ: D5/C5C2 ⊆ Out D4⋊S31208-D4:S3:3D5480,558
D4⋊S34D5 = D1210D10φ: D5/C5C2 ⊆ Out D4⋊S31208-D4:S3:4D5480,565
D4⋊S35D5 = D30.11D4φ: D5/C5C2 ⊆ Out D4⋊S32408-D4:S3:5D5480,575
D4⋊S36D5 = D125D10φ: D5/C5C2 ⊆ Out D4⋊S31208+D4:S3:6D5480,576
D4⋊S37D5 = D12.24D10φ: trivial image2408-D4:S3:7D5480,566


׿
×
𝔽