Copied to
clipboard

G = D15⋊D8order 480 = 25·3·5

The semidirect product of D15 and D8 acting via D8/D4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D204D6, D152D8, D124D10, D30.37D4, D603C22, C60.5C23, Dic15.11D4, C53(S3×D8), C33(D5×D8), C159(C2×D8), D4⋊S32D5, D4⋊D52S3, C3⋊C814D10, (C5×D4)⋊3D6, D45(S3×D5), (C3×D4)⋊3D10, (D4×D15)⋊1C2, C3⋊D402C2, C52C814D6, C5⋊D242C2, C6.67(D4×D5), C20⋊D61C2, C10.68(S3×D4), D152C81C2, C30.167(C2×D4), (D4×C15)⋊5C22, (C5×D12)⋊3C22, (C3×D20)⋊3C22, C20.5(C22×S3), C12.5(C22×D5), (C4×D15).1C22, C2.20(D10⋊D6), C4.5(C2×S3×D5), (C5×D4⋊S3)⋊3C2, (C3×D4⋊D5)⋊3C2, (C5×C3⋊C8)⋊3C22, (C3×C52C8)⋊3C22, SmallGroup(480,557)

Series: Derived Chief Lower central Upper central

C1C60 — D15⋊D8
C1C5C15C30C60C3×D20C20⋊D6 — D15⋊D8
C15C30C60 — D15⋊D8
C1C2C4D4

Generators and relations for D15⋊D8
 G = < a,b,c,d | a15=b2=c8=d2=1, bab=a-1, cac-1=dad=a11, cbc-1=dbd=a10b, dcd=c-1 >

Subgroups: 1228 in 152 conjugacy classes, 40 normal (38 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, C6, C6, C8, C2×C4, D4, D4, C23, D5, C10, C10, Dic3, C12, D6, C2×C6, C15, C2×C8, D8, C2×D4, Dic5, C20, D10, C2×C10, C3⋊C8, C24, C4×S3, D12, D12, C3⋊D4, C3×D4, C3×D4, C22×S3, C5×S3, C3×D5, D15, D15, C30, C30, C2×D8, C52C8, C40, C4×D5, D20, D20, C5⋊D4, C5×D4, C5×D4, C22×D5, S3×C8, D24, D4⋊S3, D4⋊S3, C3×D8, S3×D4, Dic15, C60, S3×D5, C6×D5, S3×C10, D30, D30, C2×C30, C8×D5, D40, D4⋊D5, D4⋊D5, C5×D8, D4×D5, S3×D8, C5×C3⋊C8, C3×C52C8, C15⋊D4, C3×D20, C5×D12, C4×D15, D60, C157D4, D4×C15, C2×S3×D5, C22×D15, D5×D8, D152C8, C3⋊D40, C5⋊D24, C3×D4⋊D5, C5×D4⋊S3, C20⋊D6, D4×D15, D15⋊D8
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, D8, C2×D4, D10, C22×S3, C2×D8, C22×D5, S3×D4, S3×D5, D4×D5, S3×D8, C2×S3×D5, D5×D8, D10⋊D6, D15⋊D8

Smallest permutation representation of D15⋊D8
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 30)(17 29)(18 28)(19 27)(20 26)(21 25)(22 24)(31 45)(32 44)(33 43)(34 42)(35 41)(36 40)(37 39)(46 53)(47 52)(48 51)(49 50)(54 60)(55 59)(56 58)(61 62)(63 75)(64 74)(65 73)(66 72)(67 71)(68 70)(77 90)(78 89)(79 88)(80 87)(81 86)(82 85)(83 84)(91 92)(93 105)(94 104)(95 103)(96 102)(97 101)(98 100)(106 114)(107 113)(108 112)(109 111)(115 120)(116 119)(117 118)
(1 62 31 118 16 84 50 92)(2 73 32 114 17 80 51 103)(3 69 33 110 18 76 52 99)(4 65 34 106 19 87 53 95)(5 61 35 117 20 83 54 91)(6 72 36 113 21 79 55 102)(7 68 37 109 22 90 56 98)(8 64 38 120 23 86 57 94)(9 75 39 116 24 82 58 105)(10 71 40 112 25 78 59 101)(11 67 41 108 26 89 60 97)(12 63 42 119 27 85 46 93)(13 74 43 115 28 81 47 104)(14 70 44 111 29 77 48 100)(15 66 45 107 30 88 49 96)
(2 12)(3 8)(5 15)(6 11)(9 14)(17 27)(18 23)(20 30)(21 26)(24 29)(31 50)(32 46)(33 57)(34 53)(35 49)(36 60)(37 56)(38 52)(39 48)(40 59)(41 55)(42 51)(43 47)(44 58)(45 54)(61 96)(62 92)(63 103)(64 99)(65 95)(66 91)(67 102)(68 98)(69 94)(70 105)(71 101)(72 97)(73 93)(74 104)(75 100)(76 120)(77 116)(78 112)(79 108)(80 119)(81 115)(82 111)(83 107)(84 118)(85 114)(86 110)(87 106)(88 117)(89 113)(90 109)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,30)(17,29)(18,28)(19,27)(20,26)(21,25)(22,24)(31,45)(32,44)(33,43)(34,42)(35,41)(36,40)(37,39)(46,53)(47,52)(48,51)(49,50)(54,60)(55,59)(56,58)(61,62)(63,75)(64,74)(65,73)(66,72)(67,71)(68,70)(77,90)(78,89)(79,88)(80,87)(81,86)(82,85)(83,84)(91,92)(93,105)(94,104)(95,103)(96,102)(97,101)(98,100)(106,114)(107,113)(108,112)(109,111)(115,120)(116,119)(117,118), (1,62,31,118,16,84,50,92)(2,73,32,114,17,80,51,103)(3,69,33,110,18,76,52,99)(4,65,34,106,19,87,53,95)(5,61,35,117,20,83,54,91)(6,72,36,113,21,79,55,102)(7,68,37,109,22,90,56,98)(8,64,38,120,23,86,57,94)(9,75,39,116,24,82,58,105)(10,71,40,112,25,78,59,101)(11,67,41,108,26,89,60,97)(12,63,42,119,27,85,46,93)(13,74,43,115,28,81,47,104)(14,70,44,111,29,77,48,100)(15,66,45,107,30,88,49,96), (2,12)(3,8)(5,15)(6,11)(9,14)(17,27)(18,23)(20,30)(21,26)(24,29)(31,50)(32,46)(33,57)(34,53)(35,49)(36,60)(37,56)(38,52)(39,48)(40,59)(41,55)(42,51)(43,47)(44,58)(45,54)(61,96)(62,92)(63,103)(64,99)(65,95)(66,91)(67,102)(68,98)(69,94)(70,105)(71,101)(72,97)(73,93)(74,104)(75,100)(76,120)(77,116)(78,112)(79,108)(80,119)(81,115)(82,111)(83,107)(84,118)(85,114)(86,110)(87,106)(88,117)(89,113)(90,109)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,30)(17,29)(18,28)(19,27)(20,26)(21,25)(22,24)(31,45)(32,44)(33,43)(34,42)(35,41)(36,40)(37,39)(46,53)(47,52)(48,51)(49,50)(54,60)(55,59)(56,58)(61,62)(63,75)(64,74)(65,73)(66,72)(67,71)(68,70)(77,90)(78,89)(79,88)(80,87)(81,86)(82,85)(83,84)(91,92)(93,105)(94,104)(95,103)(96,102)(97,101)(98,100)(106,114)(107,113)(108,112)(109,111)(115,120)(116,119)(117,118), (1,62,31,118,16,84,50,92)(2,73,32,114,17,80,51,103)(3,69,33,110,18,76,52,99)(4,65,34,106,19,87,53,95)(5,61,35,117,20,83,54,91)(6,72,36,113,21,79,55,102)(7,68,37,109,22,90,56,98)(8,64,38,120,23,86,57,94)(9,75,39,116,24,82,58,105)(10,71,40,112,25,78,59,101)(11,67,41,108,26,89,60,97)(12,63,42,119,27,85,46,93)(13,74,43,115,28,81,47,104)(14,70,44,111,29,77,48,100)(15,66,45,107,30,88,49,96), (2,12)(3,8)(5,15)(6,11)(9,14)(17,27)(18,23)(20,30)(21,26)(24,29)(31,50)(32,46)(33,57)(34,53)(35,49)(36,60)(37,56)(38,52)(39,48)(40,59)(41,55)(42,51)(43,47)(44,58)(45,54)(61,96)(62,92)(63,103)(64,99)(65,95)(66,91)(67,102)(68,98)(69,94)(70,105)(71,101)(72,97)(73,93)(74,104)(75,100)(76,120)(77,116)(78,112)(79,108)(80,119)(81,115)(82,111)(83,107)(84,118)(85,114)(86,110)(87,106)(88,117)(89,113)(90,109) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,30),(17,29),(18,28),(19,27),(20,26),(21,25),(22,24),(31,45),(32,44),(33,43),(34,42),(35,41),(36,40),(37,39),(46,53),(47,52),(48,51),(49,50),(54,60),(55,59),(56,58),(61,62),(63,75),(64,74),(65,73),(66,72),(67,71),(68,70),(77,90),(78,89),(79,88),(80,87),(81,86),(82,85),(83,84),(91,92),(93,105),(94,104),(95,103),(96,102),(97,101),(98,100),(106,114),(107,113),(108,112),(109,111),(115,120),(116,119),(117,118)], [(1,62,31,118,16,84,50,92),(2,73,32,114,17,80,51,103),(3,69,33,110,18,76,52,99),(4,65,34,106,19,87,53,95),(5,61,35,117,20,83,54,91),(6,72,36,113,21,79,55,102),(7,68,37,109,22,90,56,98),(8,64,38,120,23,86,57,94),(9,75,39,116,24,82,58,105),(10,71,40,112,25,78,59,101),(11,67,41,108,26,89,60,97),(12,63,42,119,27,85,46,93),(13,74,43,115,28,81,47,104),(14,70,44,111,29,77,48,100),(15,66,45,107,30,88,49,96)], [(2,12),(3,8),(5,15),(6,11),(9,14),(17,27),(18,23),(20,30),(21,26),(24,29),(31,50),(32,46),(33,57),(34,53),(35,49),(36,60),(37,56),(38,52),(39,48),(40,59),(41,55),(42,51),(43,47),(44,58),(45,54),(61,96),(62,92),(63,103),(64,99),(65,95),(66,91),(67,102),(68,98),(69,94),(70,105),(71,101),(72,97),(73,93),(74,104),(75,100),(76,120),(77,116),(78,112),(79,108),(80,119),(81,115),(82,111),(83,107),(84,118),(85,114),(86,110),(87,106),(88,117),(89,113),(90,109)]])

45 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B5A5B6A6B6C8A8B8C8D10A10B10C10D10E10F 12 15A15B20A20B24A24B30A30B30C30D30E30F40A40B40C40D60A60B
order1222222234455666888810101010101012151520202424303030303030404040406060
size11412151520602230222840661010228824244444420204488881212121288

45 irreducible representations

dim111111112222222222244444448
type+++++++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D4D5D6D6D6D8D10D10D10S3×D4S3×D5D4×D5S3×D8C2×S3×D5D5×D8D10⋊D6D15⋊D8
kernelD15⋊D8D152C8C3⋊D40C5⋊D24C3×D4⋊D5C5×D4⋊S3C20⋊D6D4×D15D4⋊D5Dic15D30D4⋊S3C52C8D20C5×D4D15C3⋊C8D12C3×D4C10D4C6C5C4C3C2C1
# reps111111111112111422212222442

Matrix representation of D15⋊D8 in GL6(𝔽241)

2401890000
52520000
0015400
0017423900
000010
000001
,
1520000
02400000
0024018700
000100
00002400
00000240
,
24000000
02400000
001000
0017424000
0000022
000023022
,
24000000
02400000
001000
0017424000
000010
00001240

G:=sub<GL(6,GF(241))| [240,52,0,0,0,0,189,52,0,0,0,0,0,0,1,174,0,0,0,0,54,239,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,52,240,0,0,0,0,0,0,240,0,0,0,0,0,187,1,0,0,0,0,0,0,240,0,0,0,0,0,0,240],[240,0,0,0,0,0,0,240,0,0,0,0,0,0,1,174,0,0,0,0,0,240,0,0,0,0,0,0,0,230,0,0,0,0,22,22],[240,0,0,0,0,0,0,240,0,0,0,0,0,0,1,174,0,0,0,0,0,240,0,0,0,0,0,0,1,1,0,0,0,0,0,240] >;

D15⋊D8 in GAP, Magma, Sage, TeX

D_{15}\rtimes D_8
% in TeX

G:=Group("D15:D8");
// GroupNames label

G:=SmallGroup(480,557);
// by ID

G=gap.SmallGroup(480,557);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,254,135,675,346,185,80,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^15=b^2=c^8=d^2=1,b*a*b=a^-1,c*a*c^-1=d*a*d=a^11,c*b*c^-1=d*b*d=a^10*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽