Extensions 1→N→G→Q→1 with N=D4⋊D5 and Q=S3

Direct product G=N×Q with N=D4⋊D5 and Q=S3
dρLabelID
S3×D4⋊D51208+S3xD4:D5480,555

Semidirect products G=N:Q with N=D4⋊D5 and Q=S3
extensionφ:Q→Out NdρLabelID
D4⋊D51S3 = D60.C22φ: S3/C3C2 ⊆ Out D4⋊D51208+D4:D5:1S3480,556
D4⋊D52S3 = D15⋊D8φ: S3/C3C2 ⊆ Out D4⋊D51208+D4:D5:2S3480,557
D4⋊D53S3 = D30.8D4φ: S3/C3C2 ⊆ Out D4⋊D51208-D4:D5:3S3480,558
D4⋊D54S3 = D2010D6φ: S3/C3C2 ⊆ Out D4⋊D51208-D4:D5:4S3480,570
D4⋊D55S3 = D20.10D6φ: S3/C3C2 ⊆ Out D4⋊D52408-D4:D5:5S3480,573
D4⋊D56S3 = Dic6⋊D10φ: S3/C3C2 ⊆ Out D4⋊D51208+D4:D5:6S3480,574
D4⋊D57S3 = D20.24D6φ: trivial image2408-D4:D5:7S3480,569


׿
×
𝔽