Extensions 1→N→G→Q→1 with N=C4 and Q=C3xDic10

Direct product G=NxQ with N=C4 and Q=C3xDic10
dρLabelID
C12xDic10480C12xDic10480,661

Semidirect products G=N:Q with N=C4 and Q=C3xDic10
extensionφ:Q→Aut NdρLabelID
C4:1(C3xDic10) = C3xC20:Q8φ: C3xDic10/C3xDic5C2 ⊆ Aut C4480C4:1(C3xDic10)480,681
C4:2(C3xDic10) = C3xC20:2Q8φ: C3xDic10/C60C2 ⊆ Aut C4480C4:2(C3xDic10)480,662

Non-split extensions G=N.Q with N=C4 and Q=C3xDic10
extensionφ:Q→Aut NdρLabelID
C4.1(C3xDic10) = C3xC10.D8φ: C3xDic10/C3xDic5C2 ⊆ Aut C4480C4.1(C3xDic10)480,85
C4.2(C3xDic10) = C3xC20.Q8φ: C3xDic10/C3xDic5C2 ⊆ Aut C4480C4.2(C3xDic10)480,86
C4.3(C3xDic10) = C3xC4.Dic10φ: C3xDic10/C3xDic5C2 ⊆ Aut C4480C4.3(C3xDic10)480,683
C4.4(C3xDic10) = C3xC40:6C4φ: C3xDic10/C60C2 ⊆ Aut C4480C4.4(C3xDic10)480,95
C4.5(C3xDic10) = C3xC40:5C4φ: C3xDic10/C60C2 ⊆ Aut C4480C4.5(C3xDic10)480,96
C4.6(C3xDic10) = C3xC20.6Q8φ: C3xDic10/C60C2 ⊆ Aut C4480C4.6(C3xDic10)480,663
C4.7(C3xDic10) = C3xC20:3C8central extension (φ=1)480C4.7(C3xDic10)480,82
C4.8(C3xDic10) = C3xC20.8Q8central extension (φ=1)480C4.8(C3xDic10)480,92

׿
x
:
Z
F
o
wr
Q
<