Extensions 1→N→G→Q→1 with N=C4 and Q=C3×Dic10

Direct product G=N×Q with N=C4 and Q=C3×Dic10

Semidirect products G=N:Q with N=C4 and Q=C3×Dic10
extensionφ:Q→Aut NdρLabelID
C41(C3×Dic10) = C3×C20⋊Q8φ: C3×Dic10/C3×Dic5C2 ⊆ Aut C4480C4:1(C3xDic10)480,681
C42(C3×Dic10) = C3×C202Q8φ: C3×Dic10/C60C2 ⊆ Aut C4480C4:2(C3xDic10)480,662

Non-split extensions G=N.Q with N=C4 and Q=C3×Dic10
extensionφ:Q→Aut NdρLabelID
C4.1(C3×Dic10) = C3×C10.D8φ: C3×Dic10/C3×Dic5C2 ⊆ Aut C4480C4.1(C3xDic10)480,85
C4.2(C3×Dic10) = C3×C20.Q8φ: C3×Dic10/C3×Dic5C2 ⊆ Aut C4480C4.2(C3xDic10)480,86
C4.3(C3×Dic10) = C3×C4.Dic10φ: C3×Dic10/C3×Dic5C2 ⊆ Aut C4480C4.3(C3xDic10)480,683
C4.4(C3×Dic10) = C3×C406C4φ: C3×Dic10/C60C2 ⊆ Aut C4480C4.4(C3xDic10)480,95
C4.5(C3×Dic10) = C3×C405C4φ: C3×Dic10/C60C2 ⊆ Aut C4480C4.5(C3xDic10)480,96
C4.6(C3×Dic10) = C3×C20.6Q8φ: C3×Dic10/C60C2 ⊆ Aut C4480C4.6(C3xDic10)480,663
C4.7(C3×Dic10) = C3×C203C8central extension (φ=1)480C4.7(C3xDic10)480,82
C4.8(C3×Dic10) = C3×C20.8Q8central extension (φ=1)480C4.8(C3xDic10)480,92