direct product, metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: C3×Dic5, C5⋊2C12, C15⋊4C4, C10.C6, C6.2D5, C30.2C2, C2.(C3×D5), SmallGroup(60,2)
Series: Derived ►Chief ►Lower central ►Upper central
C5 — C3×Dic5 |
Generators and relations for C3×Dic5
G = < a,b,c | a3=b10=1, c2=b5, ab=ba, ac=ca, cbc-1=b-1 >
Character table of C3×Dic5
class | 1 | 2 | 3A | 3B | 4A | 4B | 5A | 5B | 6A | 6B | 10A | 10B | 12A | 12B | 12C | 12D | 15A | 15B | 15C | 15D | 30A | 30B | 30C | 30D | |
size | 1 | 1 | 1 | 1 | 5 | 5 | 2 | 2 | 1 | 1 | 2 | 2 | 5 | 5 | 5 | 5 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ4 | 1 | 1 | ζ32 | ζ3 | -1 | -1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ6 | ζ65 | ζ6 | ζ65 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | linear of order 6 |
ρ5 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ6 | 1 | 1 | ζ3 | ζ32 | -1 | -1 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | ζ65 | ζ6 | ζ65 | ζ6 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | linear of order 6 |
ρ7 | 1 | -1 | 1 | 1 | -i | i | 1 | 1 | -1 | -1 | -1 | -1 | -i | -i | i | i | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ8 | 1 | -1 | 1 | 1 | i | -i | 1 | 1 | -1 | -1 | -1 | -1 | i | i | -i | -i | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 4 |
ρ9 | 1 | -1 | ζ3 | ζ32 | i | -i | 1 | 1 | ζ65 | ζ6 | -1 | -1 | ζ4ζ3 | ζ4ζ32 | ζ43ζ3 | ζ43ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ65 | ζ6 | ζ6 | ζ65 | linear of order 12 |
ρ10 | 1 | -1 | ζ32 | ζ3 | -i | i | 1 | 1 | ζ6 | ζ65 | -1 | -1 | ζ43ζ32 | ζ43ζ3 | ζ4ζ32 | ζ4ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ6 | ζ65 | ζ65 | ζ6 | linear of order 12 |
ρ11 | 1 | -1 | ζ32 | ζ3 | i | -i | 1 | 1 | ζ6 | ζ65 | -1 | -1 | ζ4ζ32 | ζ4ζ3 | ζ43ζ32 | ζ43ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ6 | ζ65 | ζ65 | ζ6 | linear of order 12 |
ρ12 | 1 | -1 | ζ3 | ζ32 | -i | i | 1 | 1 | ζ65 | ζ6 | -1 | -1 | ζ43ζ3 | ζ43ζ32 | ζ4ζ3 | ζ4ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ65 | ζ6 | ζ6 | ζ65 | linear of order 12 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | 2 | 2 | -1-√5/2 | -1+√5/2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ14 | 2 | 2 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | 2 | 2 | -1+√5/2 | -1-√5/2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ15 | 2 | -2 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -2 | -2 | 1-√5/2 | 1+√5/2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | symplectic lifted from Dic5, Schur index 2 |
ρ16 | 2 | -2 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -2 | -2 | 1+√5/2 | 1-√5/2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | symplectic lifted from Dic5, Schur index 2 |
ρ17 | 2 | 2 | -1+√-3 | -1-√-3 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√-3 | -1-√-3 | -1+√5/2 | -1-√5/2 | 0 | 0 | 0 | 0 | ζ32ζ53+ζ32ζ52 | ζ32ζ54+ζ32ζ5 | ζ3ζ53+ζ3ζ52 | ζ3ζ54+ζ3ζ5 | ζ3ζ54+ζ3ζ5 | ζ32ζ53+ζ32ζ52 | ζ32ζ54+ζ32ζ5 | ζ3ζ53+ζ3ζ52 | complex lifted from C3×D5 |
ρ18 | 2 | 2 | -1-√-3 | -1+√-3 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√-3 | -1+√-3 | -1-√5/2 | -1+√5/2 | 0 | 0 | 0 | 0 | ζ3ζ54+ζ3ζ5 | ζ3ζ53+ζ3ζ52 | ζ32ζ54+ζ32ζ5 | ζ32ζ53+ζ32ζ52 | ζ32ζ53+ζ32ζ52 | ζ3ζ54+ζ3ζ5 | ζ3ζ53+ζ3ζ52 | ζ32ζ54+ζ32ζ5 | complex lifted from C3×D5 |
ρ19 | 2 | -2 | -1-√-3 | -1+√-3 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1+√-3 | 1-√-3 | 1-√5/2 | 1+√5/2 | 0 | 0 | 0 | 0 | ζ3ζ53+ζ3ζ52 | ζ3ζ54+ζ3ζ5 | ζ32ζ53+ζ32ζ52 | ζ32ζ54+ζ32ζ5 | -ζ32ζ54-ζ32ζ5 | -ζ3ζ53-ζ3ζ52 | -ζ3ζ54-ζ3ζ5 | -ζ32ζ53-ζ32ζ52 | complex faithful |
ρ20 | 2 | 2 | -1+√-3 | -1-√-3 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1+√-3 | -1-√-3 | -1-√5/2 | -1+√5/2 | 0 | 0 | 0 | 0 | ζ32ζ54+ζ32ζ5 | ζ32ζ53+ζ32ζ52 | ζ3ζ54+ζ3ζ5 | ζ3ζ53+ζ3ζ52 | ζ3ζ53+ζ3ζ52 | ζ32ζ54+ζ32ζ5 | ζ32ζ53+ζ32ζ52 | ζ3ζ54+ζ3ζ5 | complex lifted from C3×D5 |
ρ21 | 2 | -2 | -1-√-3 | -1+√-3 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√-3 | 1-√-3 | 1+√5/2 | 1-√5/2 | 0 | 0 | 0 | 0 | ζ3ζ54+ζ3ζ5 | ζ3ζ53+ζ3ζ52 | ζ32ζ54+ζ32ζ5 | ζ32ζ53+ζ32ζ52 | -ζ32ζ53-ζ32ζ52 | -ζ3ζ54-ζ3ζ5 | -ζ3ζ53-ζ3ζ52 | -ζ32ζ54-ζ32ζ5 | complex faithful |
ρ22 | 2 | 2 | -1-√-3 | -1+√-3 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1-√-3 | -1+√-3 | -1+√5/2 | -1-√5/2 | 0 | 0 | 0 | 0 | ζ3ζ53+ζ3ζ52 | ζ3ζ54+ζ3ζ5 | ζ32ζ53+ζ32ζ52 | ζ32ζ54+ζ32ζ5 | ζ32ζ54+ζ32ζ5 | ζ3ζ53+ζ3ζ52 | ζ3ζ54+ζ3ζ5 | ζ32ζ53+ζ32ζ52 | complex lifted from C3×D5 |
ρ23 | 2 | -2 | -1+√-3 | -1-√-3 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√-3 | 1+√-3 | 1-√5/2 | 1+√5/2 | 0 | 0 | 0 | 0 | ζ32ζ53+ζ32ζ52 | ζ32ζ54+ζ32ζ5 | ζ3ζ53+ζ3ζ52 | ζ3ζ54+ζ3ζ5 | -ζ3ζ54-ζ3ζ5 | -ζ32ζ53-ζ32ζ52 | -ζ32ζ54-ζ32ζ5 | -ζ3ζ53-ζ3ζ52 | complex faithful |
ρ24 | 2 | -2 | -1+√-3 | -1-√-3 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1-√-3 | 1+√-3 | 1+√5/2 | 1-√5/2 | 0 | 0 | 0 | 0 | ζ32ζ54+ζ32ζ5 | ζ32ζ53+ζ32ζ52 | ζ3ζ54+ζ3ζ5 | ζ3ζ53+ζ3ζ52 | -ζ3ζ53-ζ3ζ52 | -ζ32ζ54-ζ32ζ5 | -ζ32ζ53-ζ32ζ52 | -ζ3ζ54-ζ3ζ5 | complex faithful |
(1 29 19)(2 30 20)(3 21 11)(4 22 12)(5 23 13)(6 24 14)(7 25 15)(8 26 16)(9 27 17)(10 28 18)(31 51 41)(32 52 42)(33 53 43)(34 54 44)(35 55 45)(36 56 46)(37 57 47)(38 58 48)(39 59 49)(40 60 50)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)
(1 36 6 31)(2 35 7 40)(3 34 8 39)(4 33 9 38)(5 32 10 37)(11 44 16 49)(12 43 17 48)(13 42 18 47)(14 41 19 46)(15 50 20 45)(21 54 26 59)(22 53 27 58)(23 52 28 57)(24 51 29 56)(25 60 30 55)
G:=sub<Sym(60)| (1,29,19)(2,30,20)(3,21,11)(4,22,12)(5,23,13)(6,24,14)(7,25,15)(8,26,16)(9,27,17)(10,28,18)(31,51,41)(32,52,42)(33,53,43)(34,54,44)(35,55,45)(36,56,46)(37,57,47)(38,58,48)(39,59,49)(40,60,50), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60), (1,36,6,31)(2,35,7,40)(3,34,8,39)(4,33,9,38)(5,32,10,37)(11,44,16,49)(12,43,17,48)(13,42,18,47)(14,41,19,46)(15,50,20,45)(21,54,26,59)(22,53,27,58)(23,52,28,57)(24,51,29,56)(25,60,30,55)>;
G:=Group( (1,29,19)(2,30,20)(3,21,11)(4,22,12)(5,23,13)(6,24,14)(7,25,15)(8,26,16)(9,27,17)(10,28,18)(31,51,41)(32,52,42)(33,53,43)(34,54,44)(35,55,45)(36,56,46)(37,57,47)(38,58,48)(39,59,49)(40,60,50), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60), (1,36,6,31)(2,35,7,40)(3,34,8,39)(4,33,9,38)(5,32,10,37)(11,44,16,49)(12,43,17,48)(13,42,18,47)(14,41,19,46)(15,50,20,45)(21,54,26,59)(22,53,27,58)(23,52,28,57)(24,51,29,56)(25,60,30,55) );
G=PermutationGroup([[(1,29,19),(2,30,20),(3,21,11),(4,22,12),(5,23,13),(6,24,14),(7,25,15),(8,26,16),(9,27,17),(10,28,18),(31,51,41),(32,52,42),(33,53,43),(34,54,44),(35,55,45),(36,56,46),(37,57,47),(38,58,48),(39,59,49),(40,60,50)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60)], [(1,36,6,31),(2,35,7,40),(3,34,8,39),(4,33,9,38),(5,32,10,37),(11,44,16,49),(12,43,17,48),(13,42,18,47),(14,41,19,46),(15,50,20,45),(21,54,26,59),(22,53,27,58),(23,52,28,57),(24,51,29,56),(25,60,30,55)]])
C3×Dic5 is a maximal subgroup of
C15⋊C8 D30.C2 C5⋊D12 C15⋊Q8 D5×C12 Dic5.A4 C35⋊3C12
C3×Dic5 is a maximal quotient of C35⋊3C12
Matrix representation of C3×Dic5 ►in GL2(𝔽19) generated by
7 | 0 |
0 | 7 |
1 | 17 |
3 | 14 |
10 | 10 |
7 | 9 |
G:=sub<GL(2,GF(19))| [7,0,0,7],[1,3,17,14],[10,7,10,9] >;
C3×Dic5 in GAP, Magma, Sage, TeX
C_3\times {\rm Dic}_5
% in TeX
G:=Group("C3xDic5");
// GroupNames label
G:=SmallGroup(60,2);
// by ID
G=gap.SmallGroup(60,2);
# by ID
G:=PCGroup([4,-2,-3,-2,-5,24,771]);
// Polycyclic
G:=Group<a,b,c|a^3=b^10=1,c^2=b^5,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export
Subgroup lattice of C3×Dic5 in TeX
Character table of C3×Dic5 in TeX