direct product, metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: C3×Dic10, C15⋊3Q8, C60.3C2, C20.1C6, C12.3D5, C6.13D10, Dic5.1C6, C30.13C22, C5⋊(C3×Q8), C4.(C3×D5), C2.3(C6×D5), C10.1(C2×C6), (C3×Dic5).2C2, SmallGroup(120,16)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×Dic10
G = < a,b,c | a3=b20=1, c2=b10, ab=ba, ac=ca, cbc-1=b-1 >
(1 29 48)(2 30 49)(3 31 50)(4 32 51)(5 33 52)(6 34 53)(7 35 54)(8 36 55)(9 37 56)(10 38 57)(11 39 58)(12 40 59)(13 21 60)(14 22 41)(15 23 42)(16 24 43)(17 25 44)(18 26 45)(19 27 46)(20 28 47)(61 105 87)(62 106 88)(63 107 89)(64 108 90)(65 109 91)(66 110 92)(67 111 93)(68 112 94)(69 113 95)(70 114 96)(71 115 97)(72 116 98)(73 117 99)(74 118 100)(75 119 81)(76 120 82)(77 101 83)(78 102 84)(79 103 85)(80 104 86)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 66 11 76)(2 65 12 75)(3 64 13 74)(4 63 14 73)(5 62 15 72)(6 61 16 71)(7 80 17 70)(8 79 18 69)(9 78 19 68)(10 77 20 67)(21 118 31 108)(22 117 32 107)(23 116 33 106)(24 115 34 105)(25 114 35 104)(26 113 36 103)(27 112 37 102)(28 111 38 101)(29 110 39 120)(30 109 40 119)(41 99 51 89)(42 98 52 88)(43 97 53 87)(44 96 54 86)(45 95 55 85)(46 94 56 84)(47 93 57 83)(48 92 58 82)(49 91 59 81)(50 90 60 100)
G:=sub<Sym(120)| (1,29,48)(2,30,49)(3,31,50)(4,32,51)(5,33,52)(6,34,53)(7,35,54)(8,36,55)(9,37,56)(10,38,57)(11,39,58)(12,40,59)(13,21,60)(14,22,41)(15,23,42)(16,24,43)(17,25,44)(18,26,45)(19,27,46)(20,28,47)(61,105,87)(62,106,88)(63,107,89)(64,108,90)(65,109,91)(66,110,92)(67,111,93)(68,112,94)(69,113,95)(70,114,96)(71,115,97)(72,116,98)(73,117,99)(74,118,100)(75,119,81)(76,120,82)(77,101,83)(78,102,84)(79,103,85)(80,104,86), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,66,11,76)(2,65,12,75)(3,64,13,74)(4,63,14,73)(5,62,15,72)(6,61,16,71)(7,80,17,70)(8,79,18,69)(9,78,19,68)(10,77,20,67)(21,118,31,108)(22,117,32,107)(23,116,33,106)(24,115,34,105)(25,114,35,104)(26,113,36,103)(27,112,37,102)(28,111,38,101)(29,110,39,120)(30,109,40,119)(41,99,51,89)(42,98,52,88)(43,97,53,87)(44,96,54,86)(45,95,55,85)(46,94,56,84)(47,93,57,83)(48,92,58,82)(49,91,59,81)(50,90,60,100)>;
G:=Group( (1,29,48)(2,30,49)(3,31,50)(4,32,51)(5,33,52)(6,34,53)(7,35,54)(8,36,55)(9,37,56)(10,38,57)(11,39,58)(12,40,59)(13,21,60)(14,22,41)(15,23,42)(16,24,43)(17,25,44)(18,26,45)(19,27,46)(20,28,47)(61,105,87)(62,106,88)(63,107,89)(64,108,90)(65,109,91)(66,110,92)(67,111,93)(68,112,94)(69,113,95)(70,114,96)(71,115,97)(72,116,98)(73,117,99)(74,118,100)(75,119,81)(76,120,82)(77,101,83)(78,102,84)(79,103,85)(80,104,86), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,66,11,76)(2,65,12,75)(3,64,13,74)(4,63,14,73)(5,62,15,72)(6,61,16,71)(7,80,17,70)(8,79,18,69)(9,78,19,68)(10,77,20,67)(21,118,31,108)(22,117,32,107)(23,116,33,106)(24,115,34,105)(25,114,35,104)(26,113,36,103)(27,112,37,102)(28,111,38,101)(29,110,39,120)(30,109,40,119)(41,99,51,89)(42,98,52,88)(43,97,53,87)(44,96,54,86)(45,95,55,85)(46,94,56,84)(47,93,57,83)(48,92,58,82)(49,91,59,81)(50,90,60,100) );
G=PermutationGroup([[(1,29,48),(2,30,49),(3,31,50),(4,32,51),(5,33,52),(6,34,53),(7,35,54),(8,36,55),(9,37,56),(10,38,57),(11,39,58),(12,40,59),(13,21,60),(14,22,41),(15,23,42),(16,24,43),(17,25,44),(18,26,45),(19,27,46),(20,28,47),(61,105,87),(62,106,88),(63,107,89),(64,108,90),(65,109,91),(66,110,92),(67,111,93),(68,112,94),(69,113,95),(70,114,96),(71,115,97),(72,116,98),(73,117,99),(74,118,100),(75,119,81),(76,120,82),(77,101,83),(78,102,84),(79,103,85),(80,104,86)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,66,11,76),(2,65,12,75),(3,64,13,74),(4,63,14,73),(5,62,15,72),(6,61,16,71),(7,80,17,70),(8,79,18,69),(9,78,19,68),(10,77,20,67),(21,118,31,108),(22,117,32,107),(23,116,33,106),(24,115,34,105),(25,114,35,104),(26,113,36,103),(27,112,37,102),(28,111,38,101),(29,110,39,120),(30,109,40,119),(41,99,51,89),(42,98,52,88),(43,97,53,87),(44,96,54,86),(45,95,55,85),(46,94,56,84),(47,93,57,83),(48,92,58,82),(49,91,59,81),(50,90,60,100)]])
C3×Dic10 is a maximal subgroup of
C20.D6 C15⋊SD16 C15⋊Q16 C3⋊Dic20 D12⋊D5 D60⋊C2 D15⋊Q8 C3×Q8×D5 Dic10.A4
39 conjugacy classes
class | 1 | 2 | 3A | 3B | 4A | 4B | 4C | 5A | 5B | 6A | 6B | 10A | 10B | 12A | 12B | 12C | 12D | 12E | 12F | 15A | 15B | 15C | 15D | 20A | 20B | 20C | 20D | 30A | 30B | 30C | 30D | 60A | ··· | 60H |
order | 1 | 2 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 6 | 6 | 10 | 10 | 12 | 12 | 12 | 12 | 12 | 12 | 15 | 15 | 15 | 15 | 20 | 20 | 20 | 20 | 30 | 30 | 30 | 30 | 60 | ··· | 60 |
size | 1 | 1 | 1 | 1 | 2 | 10 | 10 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 10 | 10 | 10 | 10 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 |
39 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | - | + | + | - | |||||||
image | C1 | C2 | C2 | C3 | C6 | C6 | Q8 | D5 | D10 | C3×Q8 | C3×D5 | Dic10 | C6×D5 | C3×Dic10 |
kernel | C3×Dic10 | C3×Dic5 | C60 | Dic10 | Dic5 | C20 | C15 | C12 | C6 | C5 | C4 | C3 | C2 | C1 |
# reps | 1 | 2 | 1 | 2 | 4 | 2 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 8 |
Matrix representation of C3×Dic10 ►in GL2(𝔽19) generated by
7 | 0 |
0 | 7 |
8 | 11 |
12 | 0 |
11 | 4 |
17 | 8 |
G:=sub<GL(2,GF(19))| [7,0,0,7],[8,12,11,0],[11,17,4,8] >;
C3×Dic10 in GAP, Magma, Sage, TeX
C_3\times {\rm Dic}_{10}
% in TeX
G:=Group("C3xDic10");
// GroupNames label
G:=SmallGroup(120,16);
// by ID
G=gap.SmallGroup(120,16);
# by ID
G:=PCGroup([5,-2,-2,-3,-2,-5,60,141,66,2404]);
// Polycyclic
G:=Group<a,b,c|a^3=b^20=1,c^2=b^10,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export