Extensions 1→N→G→Q→1 with N=C3 and Q=C2×D4×D5

Direct product G=N×Q with N=C3 and Q=C2×D4×D5
dρLabelID
C6×D4×D5120C6xD4xD5480,1139

Semidirect products G=N:Q with N=C3 and Q=C2×D4×D5
extensionφ:Q→Aut NdρLabelID
C31(C2×D4×D5) = C2×D5×D12φ: C2×D4×D5/C2×C4×D5C2 ⊆ Aut C3120C3:1(C2xD4xD5)480,1087
C32(C2×D4×D5) = C2×C20⋊D6φ: C2×D4×D5/C2×D20C2 ⊆ Aut C3120C3:2(C2xD4xD5)480,1089
C33(C2×D4×D5) = S3×D4×D5φ: C2×D4×D5/D4×D5C2 ⊆ Aut C3608+C3:3(C2xD4xD5)480,1097
C34(C2×D4×D5) = C2×D10⋊D6φ: C2×D4×D5/C2×C5⋊D4C2 ⊆ Aut C3120C3:4(C2xD4xD5)480,1124
C35(C2×D4×D5) = C2×D4×D15φ: C2×D4×D5/D4×C10C2 ⊆ Aut C3120C3:5(C2xD4xD5)480,1169
C36(C2×D4×D5) = C2×D5×C3⋊D4φ: C2×D4×D5/C23×D5C2 ⊆ Aut C3120C3:6(C2xD4xD5)480,1122


׿
×
𝔽