direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×D20, C4⋊2D10, C10⋊1D4, C20⋊2C22, D10⋊1C22, C10.3C23, C22.10D10, C5⋊1(C2×D4), (C2×C4)⋊2D5, (C2×C20)⋊3C2, (C22×D5)⋊1C2, C2.4(C22×D5), (C2×C10).10C22, SmallGroup(80,37)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×D20
G = < a,b,c | a2=b20=c2=1, ab=ba, ac=ca, cbc=b-1 >
Subgroups: 178 in 54 conjugacy classes, 27 normal (9 characteristic)
C1, C2, C2, C2, C4, C22, C22, C5, C2×C4, D4, C23, D5, C10, C10, C2×D4, C20, D10, D10, C2×C10, D20, C2×C20, C22×D5, C2×D20
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, D10, D20, C22×D5, C2×D20
Character table of C2×D20
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 5A | 5B | 10A | 10B | 10C | 10D | 10E | 10F | 20A | 20B | 20C | 20D | 20E | 20F | 20G | 20H | |
size | 1 | 1 | 1 | 1 | 10 | 10 | 10 | 10 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | -1+√5/2 | 1-√5/2 | -1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | -1+√5/2 | orthogonal lifted from D10 |
ρ12 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | -1-√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ14 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ15 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ16 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | -1-√5/2 | 1+√5/2 | -1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | -1-√5/2 | orthogonal lifted from D10 |
ρ17 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | -2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ18 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | -1+√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ19 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | orthogonal lifted from D20 |
ρ20 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | -1-√5/2 | 1-√5/2 | -1+√5/2 | -ζ4ζ53+ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | ζ4ζ53-ζ4ζ52 | ζ43ζ54-ζ43ζ5 | ζ43ζ54-ζ43ζ5 | orthogonal lifted from D20 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | -1-√5/2 | 1-√5/2 | -1+√5/2 | ζ4ζ53-ζ4ζ52 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | ζ43ζ54-ζ43ζ5 | ζ43ζ54-ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | orthogonal lifted from D20 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | -1+√5/2 | 1+√5/2 | -1-√5/2 | -ζ43ζ54+ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | ζ4ζ53-ζ4ζ52 | ζ4ζ53-ζ4ζ52 | ζ43ζ54-ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | orthogonal lifted from D20 |
ρ23 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | orthogonal lifted from D20 |
ρ24 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | orthogonal lifted from D20 |
ρ25 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | ζ43ζ54-ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | orthogonal lifted from D20 |
ρ26 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | -1+√5/2 | 1+√5/2 | -1-√5/2 | ζ43ζ54-ζ43ζ5 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ4ζ53-ζ4ζ52 | ζ4ζ53-ζ4ζ52 | orthogonal lifted from D20 |
(1 31)(2 32)(3 33)(4 34)(5 35)(6 36)(7 37)(8 38)(9 39)(10 40)(11 21)(12 22)(13 23)(14 24)(15 25)(16 26)(17 27)(18 28)(19 29)(20 30)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 11)(21 40)(22 39)(23 38)(24 37)(25 36)(26 35)(27 34)(28 33)(29 32)(30 31)
G:=sub<Sym(40)| (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,40)(22,39)(23,38)(24,37)(25,36)(26,35)(27,34)(28,33)(29,32)(30,31)>;
G:=Group( (1,31)(2,32)(3,33)(4,34)(5,35)(6,36)(7,37)(8,38)(9,39)(10,40)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,40)(22,39)(23,38)(24,37)(25,36)(26,35)(27,34)(28,33)(29,32)(30,31) );
G=PermutationGroup([[(1,31),(2,32),(3,33),(4,34),(5,35),(6,36),(7,37),(8,38),(9,39),(10,40),(11,21),(12,22),(13,23),(14,24),(15,25),(16,26),(17,27),(18,28),(19,29),(20,30)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,40),(22,39),(23,38),(24,37),(25,36),(26,35),(27,34),(28,33),(29,32),(30,31)]])
C2×D20 is a maximal subgroup of
D20⋊6C4 D20⋊5C4 C20.46D4 D10.D4 C20⋊4D4 C4.D20 C22⋊D20 D10⋊D4 D20⋊8C4 D10.13D4 C4⋊D20 C8⋊D10 C20⋊7D4 C20⋊D4 C20.23D4 D4⋊D10 C2×D4×D5 D4⋊8D10
C2×D20 is a maximal quotient of
C20⋊2Q8 C20⋊4D4 C4.D20 C22⋊D20 C22.D20 C4⋊D20 D10⋊2Q8 D40⋊7C2 C8⋊D10 C8.D10 C20⋊7D4
Matrix representation of C2×D20 ►in GL4(𝔽41) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 |
0 | 1 | 0 | 0 |
40 | 0 | 0 | 0 |
0 | 0 | 40 | 1 |
0 | 0 | 5 | 35 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 5 | 1 |
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,40,0,0,0,0,40],[0,40,0,0,1,0,0,0,0,0,40,5,0,0,1,35],[0,1,0,0,1,0,0,0,0,0,40,5,0,0,0,1] >;
C2×D20 in GAP, Magma, Sage, TeX
C_2\times D_{20}
% in TeX
G:=Group("C2xD20");
// GroupNames label
G:=SmallGroup(80,37);
// by ID
G=gap.SmallGroup(80,37);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-5,182,42,1604]);
// Polycyclic
G:=Group<a,b,c|a^2=b^20=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export