Extensions 1→N→G→Q→1 with N=C4 and Q=C3×D20

Direct product G=N×Q with N=C4 and Q=C3×D20
dρLabelID
C12×D20240C12xD20480,666

Semidirect products G=N:Q with N=C4 and Q=C3×D20
extensionφ:Q→Aut NdρLabelID
C41(C3×D20) = C3×C204D4φ: C3×D20/C60C2 ⊆ Aut C4240C4:1(C3xD20)480,667
C42(C3×D20) = C3×C4⋊D20φ: C3×D20/C6×D5C2 ⊆ Aut C4240C4:2(C3xD20)480,688

Non-split extensions G=N.Q with N=C4 and Q=C3×D20
extensionφ:Q→Aut NdρLabelID
C4.1(C3×D20) = C3×D80φ: C3×D20/C60C2 ⊆ Aut C42402C4.1(C3xD20)480,77
C4.2(C3×D20) = C3×C16⋊D5φ: C3×D20/C60C2 ⊆ Aut C42402C4.2(C3xD20)480,78
C4.3(C3×D20) = C3×Dic40φ: C3×D20/C60C2 ⊆ Aut C44802C4.3(C3xD20)480,79
C4.4(C3×D20) = C3×C202Q8φ: C3×D20/C60C2 ⊆ Aut C4480C4.4(C3xD20)480,662
C4.5(C3×D20) = C3×C4.D20φ: C3×D20/C60C2 ⊆ Aut C4240C4.5(C3xD20)480,668
C4.6(C3×D20) = C6×C40⋊C2φ: C3×D20/C60C2 ⊆ Aut C4240C4.6(C3xD20)480,695
C4.7(C3×D20) = C6×D40φ: C3×D20/C60C2 ⊆ Aut C4240C4.7(C3xD20)480,696
C4.8(C3×D20) = C6×Dic20φ: C3×D20/C60C2 ⊆ Aut C4480C4.8(C3xD20)480,698
C4.9(C3×D20) = C3×D206C4φ: C3×D20/C6×D5C2 ⊆ Aut C4240C4.9(C3xD20)480,87
C4.10(C3×D20) = C3×C10.Q16φ: C3×D20/C6×D5C2 ⊆ Aut C4480C4.10(C3xD20)480,88
C4.11(C3×D20) = C3×C20.46D4φ: C3×D20/C6×D5C2 ⊆ Aut C41204C4.11(C3xD20)480,101
C4.12(C3×D20) = C3×C4.12D20φ: C3×D20/C6×D5C2 ⊆ Aut C42404C4.12(C3xD20)480,102
C4.13(C3×D20) = C3×D102Q8φ: C3×D20/C6×D5C2 ⊆ Aut C4240C4.13(C3xD20)480,690
C4.14(C3×D20) = C3×C8⋊D10φ: C3×D20/C6×D5C2 ⊆ Aut C41204C4.14(C3xD20)480,701
C4.15(C3×D20) = C3×C8.D10φ: C3×D20/C6×D5C2 ⊆ Aut C42404C4.15(C3xD20)480,702
C4.16(C3×D20) = C3×C203C8central extension (φ=1)480C4.16(C3xD20)480,82
C4.17(C3×D20) = C3×D204C4central extension (φ=1)1202C4.17(C3xD20)480,83
C4.18(C3×D20) = C3×C40.6C4central extension (φ=1)2402C4.18(C3xD20)480,97
C4.19(C3×D20) = C3×D101C8central extension (φ=1)240C4.19(C3xD20)480,98
C4.20(C3×D20) = C3×D407C2central extension (φ=1)2402C4.20(C3xD20)480,697

׿
×
𝔽