direct product, metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: C3×D20, C15⋊5D4, C20⋊1C6, C60⋊3C2, C12⋊3D5, D10⋊1C6, C6.15D10, C30.15C22, C4⋊(C3×D5), C5⋊1(C3×D4), (C6×D5)⋊4C2, C2.4(C6×D5), C10.3(C2×C6), SmallGroup(120,18)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×D20
G = < a,b,c | a3=b20=c2=1, ab=ba, ac=ca, cbc=b-1 >
(1 25 47)(2 26 48)(3 27 49)(4 28 50)(5 29 51)(6 30 52)(7 31 53)(8 32 54)(9 33 55)(10 34 56)(11 35 57)(12 36 58)(13 37 59)(14 38 60)(15 39 41)(16 40 42)(17 21 43)(18 22 44)(19 23 45)(20 24 46)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 11)(21 28)(22 27)(23 26)(24 25)(29 40)(30 39)(31 38)(32 37)(33 36)(34 35)(41 52)(42 51)(43 50)(44 49)(45 48)(46 47)(53 60)(54 59)(55 58)(56 57)
G:=sub<Sym(60)| (1,25,47)(2,26,48)(3,27,49)(4,28,50)(5,29,51)(6,30,52)(7,31,53)(8,32,54)(9,33,55)(10,34,56)(11,35,57)(12,36,58)(13,37,59)(14,38,60)(15,39,41)(16,40,42)(17,21,43)(18,22,44)(19,23,45)(20,24,46), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,28)(22,27)(23,26)(24,25)(29,40)(30,39)(31,38)(32,37)(33,36)(34,35)(41,52)(42,51)(43,50)(44,49)(45,48)(46,47)(53,60)(54,59)(55,58)(56,57)>;
G:=Group( (1,25,47)(2,26,48)(3,27,49)(4,28,50)(5,29,51)(6,30,52)(7,31,53)(8,32,54)(9,33,55)(10,34,56)(11,35,57)(12,36,58)(13,37,59)(14,38,60)(15,39,41)(16,40,42)(17,21,43)(18,22,44)(19,23,45)(20,24,46), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,28)(22,27)(23,26)(24,25)(29,40)(30,39)(31,38)(32,37)(33,36)(34,35)(41,52)(42,51)(43,50)(44,49)(45,48)(46,47)(53,60)(54,59)(55,58)(56,57) );
G=PermutationGroup([[(1,25,47),(2,26,48),(3,27,49),(4,28,50),(5,29,51),(6,30,52),(7,31,53),(8,32,54),(9,33,55),(10,34,56),(11,35,57),(12,36,58),(13,37,59),(14,38,60),(15,39,41),(16,40,42),(17,21,43),(18,22,44),(19,23,45),(20,24,46)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,28),(22,27),(23,26),(24,25),(29,40),(30,39),(31,38),(32,37),(33,36),(34,35),(41,52),(42,51),(43,50),(44,49),(45,48),(46,47),(53,60),(54,59),(55,58),(56,57)]])
C3×D20 is a maximal subgroup of
C15⋊D8 C3⋊D40 C30.D4 C6.D20 D20⋊5S3 D20⋊S3 C20⋊D6 C3×D4×D5 D20.A4
39 conjugacy classes
class | 1 | 2A | 2B | 2C | 3A | 3B | 4 | 5A | 5B | 6A | 6B | 6C | 6D | 6E | 6F | 10A | 10B | 12A | 12B | 15A | 15B | 15C | 15D | 20A | 20B | 20C | 20D | 30A | 30B | 30C | 30D | 60A | ··· | 60H |
order | 1 | 2 | 2 | 2 | 3 | 3 | 4 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 12 | 12 | 15 | 15 | 15 | 15 | 20 | 20 | 20 | 20 | 30 | 30 | 30 | 30 | 60 | ··· | 60 |
size | 1 | 1 | 10 | 10 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 10 | 10 | 10 | 10 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 |
39 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C3 | C6 | C6 | D4 | D5 | D10 | C3×D4 | C3×D5 | D20 | C6×D5 | C3×D20 |
kernel | C3×D20 | C60 | C6×D5 | D20 | C20 | D10 | C15 | C12 | C6 | C5 | C4 | C3 | C2 | C1 |
# reps | 1 | 1 | 2 | 2 | 2 | 4 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 8 |
Matrix representation of C3×D20 ►in GL2(𝔽19) generated by
11 | 0 |
0 | 11 |
6 | 7 |
8 | 0 |
0 | 7 |
11 | 0 |
G:=sub<GL(2,GF(19))| [11,0,0,11],[6,8,7,0],[0,11,7,0] >;
C3×D20 in GAP, Magma, Sage, TeX
C_3\times D_{20}
% in TeX
G:=Group("C3xD20");
// GroupNames label
G:=SmallGroup(120,18);
// by ID
G=gap.SmallGroup(120,18);
# by ID
G:=PCGroup([5,-2,-2,-3,-2,-5,141,66,2404]);
// Polycyclic
G:=Group<a,b,c|a^3=b^20=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export