# Extensions 1→N→G→Q→1 with N=C22 and Q=D5×C12

Direct product G=N×Q with N=C22 and Q=D5×C12
dρLabelID
D5×C22×C12240D5xC2^2xC12480,1136

Semidirect products G=N:Q with N=C22 and Q=D5×C12
extensionφ:Q→Aut NdρLabelID
C22⋊(D5×C12) = C4×D5×A4φ: D5×C12/C4×D5C3 ⊆ Aut C22606C2^2:(D5xC12)480,1036
C222(D5×C12) = C3×Dic54D4φ: D5×C12/C3×Dic5C2 ⊆ Aut C22240C2^2:2(D5xC12)480,674
C223(D5×C12) = C12×C5⋊D4φ: D5×C12/C60C2 ⊆ Aut C22240C2^2:3(D5xC12)480,721
C224(D5×C12) = C3×D5×C22⋊C4φ: D5×C12/C6×D5C2 ⊆ Aut C22120C2^2:4(D5xC12)480,673

Non-split extensions G=N.Q with N=C22 and Q=D5×C12
extensionφ:Q→Aut NdρLabelID
C22.1(D5×C12) = C3×D20.2C4φ: D5×C12/C3×Dic5C2 ⊆ Aut C222404C2^2.1(D5xC12)480,700
C22.2(D5×C12) = C3×D20.3C4φ: D5×C12/C60C2 ⊆ Aut C222402C2^2.2(D5xC12)480,694
C22.3(D5×C12) = C3×C23.1D10φ: D5×C12/C6×D5C2 ⊆ Aut C221204C2^2.3(D5xC12)480,84
C22.4(D5×C12) = C3×C20.46D4φ: D5×C12/C6×D5C2 ⊆ Aut C221204C2^2.4(D5xC12)480,101
C22.5(D5×C12) = C3×C4.12D20φ: D5×C12/C6×D5C2 ⊆ Aut C222404C2^2.5(D5xC12)480,102
C22.6(D5×C12) = C3×C23.11D10φ: D5×C12/C6×D5C2 ⊆ Aut C22240C2^2.6(D5xC12)480,670
C22.7(D5×C12) = C3×D5×M4(2)φ: D5×C12/C6×D5C2 ⊆ Aut C221204C2^2.7(D5xC12)480,699
C22.8(D5×C12) = Dic5×C24central extension (φ=1)480C2^2.8(D5xC12)480,91
C22.9(D5×C12) = C3×C20.8Q8central extension (φ=1)480C2^2.9(D5xC12)480,92
C22.10(D5×C12) = C3×C408C4central extension (φ=1)480C2^2.10(D5xC12)480,93
C22.11(D5×C12) = C3×D101C8central extension (φ=1)240C2^2.11(D5xC12)480,98
C22.12(D5×C12) = C3×C10.10C42central extension (φ=1)480C2^2.12(D5xC12)480,109
C22.13(D5×C12) = D5×C2×C24central extension (φ=1)240C2^2.13(D5xC12)480,692
C22.14(D5×C12) = C6×C8⋊D5central extension (φ=1)240C2^2.14(D5xC12)480,693
C22.15(D5×C12) = Dic5×C2×C12central extension (φ=1)480C2^2.15(D5xC12)480,715
C22.16(D5×C12) = C6×C10.D4central extension (φ=1)480C2^2.16(D5xC12)480,716
C22.17(D5×C12) = C6×D10⋊C4central extension (φ=1)240C2^2.17(D5xC12)480,720

׿
×
𝔽