Copied to
clipboard

G = C3×D5×M4(2)  order 480 = 25·3·5

Direct product of C3, D5 and M4(2)

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C3×D5×M4(2), C2428D10, C12033C22, C60.277C23, C86(C6×D5), C406(C2×C6), (C8×D5)⋊7C6, C8⋊D55C6, C55(C6×M4(2)), (D5×C24)⋊16C2, (C4×D5).1C12, (D5×C12).6C4, C4.15(D5×C12), C12.85(C4×D5), C4.Dic55C6, C60.167(C2×C4), C20.33(C2×C12), (C5×M4(2))⋊3C6, C1527(C2×M4(2)), C22.7(D5×C12), D10.20(C2×C12), (C2×C12).357D10, (C15×M4(2))⋊9C2, C20.37(C22×C6), (C2×Dic5).7C12, (C6×Dic5).16C4, (C22×D5).5C12, C10.28(C22×C12), C30.186(C22×C4), (C2×C60).285C22, Dic5.13(C2×C12), C12.244(C22×D5), (D5×C12).119C22, (C2×C4×D5).3C6, C4.38(D5×C2×C6), (D5×C2×C6).11C4, C2.16(D5×C2×C12), C6.111(C2×C4×D5), C52C811(C2×C6), (D5×C2×C12).14C2, (C2×C4).44(C6×D5), (C2×C6).41(C4×D5), (C3×C8⋊D5)⋊13C2, (C2×C20).22(C2×C6), (C6×D5).69(C2×C4), (C4×D5).38(C2×C6), (C2×C30).122(C2×C4), (C2×C10).25(C2×C12), (C3×C52C8)⋊44C22, (C3×C4.Dic5)⋊17C2, (C3×Dic5).78(C2×C4), SmallGroup(480,699)

Series: Derived Chief Lower central Upper central

C1C10 — C3×D5×M4(2)
C1C5C10C20C60D5×C12D5×C2×C12 — C3×D5×M4(2)
C5C10 — C3×D5×M4(2)
C1C12C3×M4(2)

Generators and relations for C3×D5×M4(2)
 G = < a,b,c,d,e | a3=b5=c2=d8=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d5 >

Subgroups: 368 in 136 conjugacy classes, 78 normal (54 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, C6, C6, C8, C8, C2×C4, C2×C4, C23, D5, D5, C10, C10, C12, C12, C2×C6, C2×C6, C15, C2×C8, M4(2), M4(2), C22×C4, Dic5, C20, D10, D10, C2×C10, C24, C24, C2×C12, C2×C12, C22×C6, C3×D5, C3×D5, C30, C30, C2×M4(2), C52C8, C40, C4×D5, C2×Dic5, C2×C20, C22×D5, C2×C24, C3×M4(2), C3×M4(2), C22×C12, C3×Dic5, C60, C6×D5, C6×D5, C2×C30, C8×D5, C8⋊D5, C4.Dic5, C5×M4(2), C2×C4×D5, C6×M4(2), C3×C52C8, C120, D5×C12, C6×Dic5, C2×C60, D5×C2×C6, D5×M4(2), D5×C24, C3×C8⋊D5, C3×C4.Dic5, C15×M4(2), D5×C2×C12, C3×D5×M4(2)
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, C23, D5, C12, C2×C6, M4(2), C22×C4, D10, C2×C12, C22×C6, C3×D5, C2×M4(2), C4×D5, C22×D5, C3×M4(2), C22×C12, C6×D5, C2×C4×D5, C6×M4(2), D5×C12, D5×C2×C6, D5×M4(2), D5×C2×C12, C3×D5×M4(2)

Smallest permutation representation of C3×D5×M4(2)
On 120 points
Generators in S120
(1 104 64)(2 97 57)(3 98 58)(4 99 59)(5 100 60)(6 101 61)(7 102 62)(8 103 63)(9 86 43)(10 87 44)(11 88 45)(12 81 46)(13 82 47)(14 83 48)(15 84 41)(16 85 42)(17 52 73)(18 53 74)(19 54 75)(20 55 76)(21 56 77)(22 49 78)(23 50 79)(24 51 80)(25 96 113)(26 89 114)(27 90 115)(28 91 116)(29 92 117)(30 93 118)(31 94 119)(32 95 120)(33 111 69)(34 112 70)(35 105 71)(36 106 72)(37 107 65)(38 108 66)(39 109 67)(40 110 68)
(1 108 56 29 44)(2 109 49 30 45)(3 110 50 31 46)(4 111 51 32 47)(5 112 52 25 48)(6 105 53 26 41)(7 106 54 27 42)(8 107 55 28 43)(9 103 65 76 91)(10 104 66 77 92)(11 97 67 78 93)(12 98 68 79 94)(13 99 69 80 95)(14 100 70 73 96)(15 101 71 74 89)(16 102 72 75 90)(17 113 83 60 34)(18 114 84 61 35)(19 115 85 62 36)(20 116 86 63 37)(21 117 87 64 38)(22 118 88 57 39)(23 119 81 58 40)(24 120 82 59 33)
(1 44)(2 45)(3 46)(4 47)(5 48)(6 41)(7 42)(8 43)(9 103)(10 104)(11 97)(12 98)(13 99)(14 100)(15 101)(16 102)(25 112)(26 105)(27 106)(28 107)(29 108)(30 109)(31 110)(32 111)(33 120)(34 113)(35 114)(36 115)(37 116)(38 117)(39 118)(40 119)(57 88)(58 81)(59 82)(60 83)(61 84)(62 85)(63 86)(64 87)(65 91)(66 92)(67 93)(68 94)(69 95)(70 96)(71 89)(72 90)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)
(2 6)(4 8)(9 13)(11 15)(18 22)(20 24)(26 30)(28 32)(33 37)(35 39)(41 45)(43 47)(49 53)(51 55)(57 61)(59 63)(65 69)(67 71)(74 78)(76 80)(82 86)(84 88)(89 93)(91 95)(97 101)(99 103)(105 109)(107 111)(114 118)(116 120)

G:=sub<Sym(120)| (1,104,64)(2,97,57)(3,98,58)(4,99,59)(5,100,60)(6,101,61)(7,102,62)(8,103,63)(9,86,43)(10,87,44)(11,88,45)(12,81,46)(13,82,47)(14,83,48)(15,84,41)(16,85,42)(17,52,73)(18,53,74)(19,54,75)(20,55,76)(21,56,77)(22,49,78)(23,50,79)(24,51,80)(25,96,113)(26,89,114)(27,90,115)(28,91,116)(29,92,117)(30,93,118)(31,94,119)(32,95,120)(33,111,69)(34,112,70)(35,105,71)(36,106,72)(37,107,65)(38,108,66)(39,109,67)(40,110,68), (1,108,56,29,44)(2,109,49,30,45)(3,110,50,31,46)(4,111,51,32,47)(5,112,52,25,48)(6,105,53,26,41)(7,106,54,27,42)(8,107,55,28,43)(9,103,65,76,91)(10,104,66,77,92)(11,97,67,78,93)(12,98,68,79,94)(13,99,69,80,95)(14,100,70,73,96)(15,101,71,74,89)(16,102,72,75,90)(17,113,83,60,34)(18,114,84,61,35)(19,115,85,62,36)(20,116,86,63,37)(21,117,87,64,38)(22,118,88,57,39)(23,119,81,58,40)(24,120,82,59,33), (1,44)(2,45)(3,46)(4,47)(5,48)(6,41)(7,42)(8,43)(9,103)(10,104)(11,97)(12,98)(13,99)(14,100)(15,101)(16,102)(25,112)(26,105)(27,106)(28,107)(29,108)(30,109)(31,110)(32,111)(33,120)(34,113)(35,114)(36,115)(37,116)(38,117)(39,118)(40,119)(57,88)(58,81)(59,82)(60,83)(61,84)(62,85)(63,86)(64,87)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,89)(72,90), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120), (2,6)(4,8)(9,13)(11,15)(18,22)(20,24)(26,30)(28,32)(33,37)(35,39)(41,45)(43,47)(49,53)(51,55)(57,61)(59,63)(65,69)(67,71)(74,78)(76,80)(82,86)(84,88)(89,93)(91,95)(97,101)(99,103)(105,109)(107,111)(114,118)(116,120)>;

G:=Group( (1,104,64)(2,97,57)(3,98,58)(4,99,59)(5,100,60)(6,101,61)(7,102,62)(8,103,63)(9,86,43)(10,87,44)(11,88,45)(12,81,46)(13,82,47)(14,83,48)(15,84,41)(16,85,42)(17,52,73)(18,53,74)(19,54,75)(20,55,76)(21,56,77)(22,49,78)(23,50,79)(24,51,80)(25,96,113)(26,89,114)(27,90,115)(28,91,116)(29,92,117)(30,93,118)(31,94,119)(32,95,120)(33,111,69)(34,112,70)(35,105,71)(36,106,72)(37,107,65)(38,108,66)(39,109,67)(40,110,68), (1,108,56,29,44)(2,109,49,30,45)(3,110,50,31,46)(4,111,51,32,47)(5,112,52,25,48)(6,105,53,26,41)(7,106,54,27,42)(8,107,55,28,43)(9,103,65,76,91)(10,104,66,77,92)(11,97,67,78,93)(12,98,68,79,94)(13,99,69,80,95)(14,100,70,73,96)(15,101,71,74,89)(16,102,72,75,90)(17,113,83,60,34)(18,114,84,61,35)(19,115,85,62,36)(20,116,86,63,37)(21,117,87,64,38)(22,118,88,57,39)(23,119,81,58,40)(24,120,82,59,33), (1,44)(2,45)(3,46)(4,47)(5,48)(6,41)(7,42)(8,43)(9,103)(10,104)(11,97)(12,98)(13,99)(14,100)(15,101)(16,102)(25,112)(26,105)(27,106)(28,107)(29,108)(30,109)(31,110)(32,111)(33,120)(34,113)(35,114)(36,115)(37,116)(38,117)(39,118)(40,119)(57,88)(58,81)(59,82)(60,83)(61,84)(62,85)(63,86)(64,87)(65,91)(66,92)(67,93)(68,94)(69,95)(70,96)(71,89)(72,90), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120), (2,6)(4,8)(9,13)(11,15)(18,22)(20,24)(26,30)(28,32)(33,37)(35,39)(41,45)(43,47)(49,53)(51,55)(57,61)(59,63)(65,69)(67,71)(74,78)(76,80)(82,86)(84,88)(89,93)(91,95)(97,101)(99,103)(105,109)(107,111)(114,118)(116,120) );

G=PermutationGroup([[(1,104,64),(2,97,57),(3,98,58),(4,99,59),(5,100,60),(6,101,61),(7,102,62),(8,103,63),(9,86,43),(10,87,44),(11,88,45),(12,81,46),(13,82,47),(14,83,48),(15,84,41),(16,85,42),(17,52,73),(18,53,74),(19,54,75),(20,55,76),(21,56,77),(22,49,78),(23,50,79),(24,51,80),(25,96,113),(26,89,114),(27,90,115),(28,91,116),(29,92,117),(30,93,118),(31,94,119),(32,95,120),(33,111,69),(34,112,70),(35,105,71),(36,106,72),(37,107,65),(38,108,66),(39,109,67),(40,110,68)], [(1,108,56,29,44),(2,109,49,30,45),(3,110,50,31,46),(4,111,51,32,47),(5,112,52,25,48),(6,105,53,26,41),(7,106,54,27,42),(8,107,55,28,43),(9,103,65,76,91),(10,104,66,77,92),(11,97,67,78,93),(12,98,68,79,94),(13,99,69,80,95),(14,100,70,73,96),(15,101,71,74,89),(16,102,72,75,90),(17,113,83,60,34),(18,114,84,61,35),(19,115,85,62,36),(20,116,86,63,37),(21,117,87,64,38),(22,118,88,57,39),(23,119,81,58,40),(24,120,82,59,33)], [(1,44),(2,45),(3,46),(4,47),(5,48),(6,41),(7,42),(8,43),(9,103),(10,104),(11,97),(12,98),(13,99),(14,100),(15,101),(16,102),(25,112),(26,105),(27,106),(28,107),(29,108),(30,109),(31,110),(32,111),(33,120),(34,113),(35,114),(36,115),(37,116),(38,117),(39,118),(40,119),(57,88),(58,81),(59,82),(60,83),(61,84),(62,85),(63,86),(64,87),(65,91),(66,92),(67,93),(68,94),(69,95),(70,96),(71,89),(72,90)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120)], [(2,6),(4,8),(9,13),(11,15),(18,22),(20,24),(26,30),(28,32),(33,37),(35,39),(41,45),(43,47),(49,53),(51,55),(57,61),(59,63),(65,69),(67,71),(74,78),(76,80),(82,86),(84,88),(89,93),(91,95),(97,101),(99,103),(105,109),(107,111),(114,118),(116,120)]])

120 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C4D4E4F5A5B6A6B6C6D6E6F6G6H6I6J8A8B8C8D8E8F8G8H10A10B10C10D12A12B12C12D12E12F12G12H12I12J12K12L15A15B15C15D20A20B20C20D20E20F24A···24H24I···24P30A30B30C30D30E30F30G30H40A···40H60A···60H60I60J60K60L120A···120P
order1222223344444455666666666688888888101010101212121212121212121212121515151520202020202024···2424···24303030303030303040···4060···6060606060120···120
size11255101111255102211225555101022221010101022441111225555101022222222442···210···10222244444···42···244444···4

120 irreducible representations

dim11111111111111111122222222222244
type+++++++++
imageC1C2C2C2C2C2C3C4C4C4C6C6C6C6C6C12C12C12D5M4(2)D10D10C3×D5C4×D5C4×D5C3×M4(2)C6×D5C6×D5D5×C12D5×C12D5×M4(2)C3×D5×M4(2)
kernelC3×D5×M4(2)D5×C24C3×C8⋊D5C3×C4.Dic5C15×M4(2)D5×C2×C12D5×M4(2)D5×C12C6×Dic5D5×C2×C6C8×D5C8⋊D5C4.Dic5C5×M4(2)C2×C4×D5C4×D5C2×Dic5C22×D5C3×M4(2)C3×D5C24C2×C12M4(2)C12C2×C6D5C8C2×C4C4C22C3C1
# reps12211124224422284424424448848848

Matrix representation of C3×D5×M4(2) in GL4(𝔽241) generated by

15000
01500
002250
000225
,
0100
2405100
0010
0001
,
0100
1000
0010
0001
,
240000
024000
0001
00640
,
1000
0100
0010
000240
G:=sub<GL(4,GF(241))| [15,0,0,0,0,15,0,0,0,0,225,0,0,0,0,225],[0,240,0,0,1,51,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[240,0,0,0,0,240,0,0,0,0,0,64,0,0,1,0],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,240] >;

C3×D5×M4(2) in GAP, Magma, Sage, TeX

C_3\times D_5\times M_4(2)
% in TeX

G:=Group("C3xD5xM4(2)");
// GroupNames label

G:=SmallGroup(480,699);
// by ID

G=gap.SmallGroup(480,699);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-5,555,142,102,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^5=c^2=d^8=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^5>;
// generators/relations

׿
×
𝔽