Extensions 1→N→G→Q→1 with N=C8 and Q=C5×Dic3

Direct product G=N×Q with N=C8 and Q=C5×Dic3
dρLabelID
Dic3×C40480Dic3xC40480,132

Semidirect products G=N:Q with N=C8 and Q=C5×Dic3
extensionφ:Q→Aut NdρLabelID
C81(C5×Dic3) = C5×C241C4φ: C5×Dic3/C30C2 ⊆ Aut C8480C8:1(C5xDic3)480,137
C82(C5×Dic3) = C5×C8⋊Dic3φ: C5×Dic3/C30C2 ⊆ Aut C8480C8:2(C5xDic3)480,136
C83(C5×Dic3) = C5×C24⋊C4φ: C5×Dic3/C30C2 ⊆ Aut C8480C8:3(C5xDic3)480,134

Non-split extensions G=N.Q with N=C8 and Q=C5×Dic3
extensionφ:Q→Aut NdρLabelID
C8.1(C5×Dic3) = C5×C24.C4φ: C5×Dic3/C30C2 ⊆ Aut C82402C8.1(C5xDic3)480,138
C8.2(C5×Dic3) = C5×C12.C8φ: C5×Dic3/C30C2 ⊆ Aut C82402C8.2(C5xDic3)480,131
C8.3(C5×Dic3) = C5×C3⋊C32central extension (φ=1)4802C8.3(C5xDic3)480,1
C8.4(C5×Dic3) = C10×C3⋊C16central extension (φ=1)480C8.4(C5xDic3)480,130

׿
×
𝔽