# Extensions 1→N→G→Q→1 with N=C5×Dic3 and Q=C8

Direct product G=N×Q with N=C5×Dic3 and Q=C8
dρLabelID
Dic3×C40480Dic3xC40480,132

Semidirect products G=N:Q with N=C5×Dic3 and Q=C8
extensionφ:Q→Out NdρLabelID
(C5×Dic3)⋊1C8 = Dic3×C5⋊C8φ: C8/C2C4 ⊆ Out C5×Dic3480(C5xDic3):1C8480,244
(C5×Dic3)⋊2C8 = C30.4M4(2)φ: C8/C2C4 ⊆ Out C5×Dic3480(C5xDic3):2C8480,252
(C5×Dic3)⋊3C8 = Dic3×C52C8φ: C8/C4C2 ⊆ Out C5×Dic3480(C5xDic3):3C8480,26
(C5×Dic3)⋊4C8 = C60.15Q8φ: C8/C4C2 ⊆ Out C5×Dic3480(C5xDic3):4C8480,60
(C5×Dic3)⋊5C8 = C5×Dic3⋊C8φ: C8/C4C2 ⊆ Out C5×Dic3480(C5xDic3):5C8480,133

Non-split extensions G=N.Q with N=C5×Dic3 and Q=C8
extensionφ:Q→Out NdρLabelID
(C5×Dic3).1C8 = S3×C5⋊C16φ: C8/C2C4 ⊆ Out C5×Dic32408(C5xDic3).1C8480,239
(C5×Dic3).2C8 = C15⋊M5(2)φ: C8/C2C4 ⊆ Out C5×Dic32408(C5xDic3).2C8480,241
(C5×Dic3).3C8 = S3×C52C16φ: C8/C4C2 ⊆ Out C5×Dic32404(C5xDic3).3C8480,8
(C5×Dic3).4C8 = C40.52D6φ: C8/C4C2 ⊆ Out C5×Dic32404(C5xDic3).4C8480,11
(C5×Dic3).5C8 = C5×D6.C8φ: C8/C4C2 ⊆ Out C5×Dic32402(C5xDic3).5C8480,117
(C5×Dic3).6C8 = S3×C80φ: trivial image2402(C5xDic3).6C8480,116

׿
×
𝔽