Extensions 1→N→G→Q→1 with N=C10 and Q=C3⋊Q16

Direct product G=N×Q with N=C10 and Q=C3⋊Q16
dρLabelID
C10×C3⋊Q16480C10xC3:Q16480,822

Semidirect products G=N:Q with N=C10 and Q=C3⋊Q16
extensionφ:Q→Aut NdρLabelID
C101(C3⋊Q16) = C2×C3⋊Dic20φ: C3⋊Q16/C3⋊C8C2 ⊆ Aut C10480C10:1(C3:Q16)480,395
C102(C3⋊Q16) = C2×C15⋊Q16φ: C3⋊Q16/Dic6C2 ⊆ Aut C10480C10:2(C3:Q16)480,394
C103(C3⋊Q16) = C2×C157Q16φ: C3⋊Q16/C3×Q8C2 ⊆ Aut C10480C10:3(C3:Q16)480,908

Non-split extensions G=N.Q with N=C10 and Q=C3⋊Q16
extensionφ:Q→Aut NdρLabelID
C10.1(C3⋊Q16) = C6.Dic20φ: C3⋊Q16/C3⋊C8C2 ⊆ Aut C10480C10.1(C3:Q16)480,47
C10.2(C3⋊Q16) = Dic3012C4φ: C3⋊Q16/C3⋊C8C2 ⊆ Aut C10480C10.2(C3:Q16)480,50
C10.3(C3⋊Q16) = C60.5Q8φ: C3⋊Q16/C3⋊C8C2 ⊆ Aut C10480C10.3(C3:Q16)480,66
C10.4(C3⋊Q16) = C30.Q16φ: C3⋊Q16/Dic6C2 ⊆ Aut C10480C10.4(C3:Q16)480,46
C10.5(C3⋊Q16) = Dic6⋊Dic5φ: C3⋊Q16/Dic6C2 ⊆ Aut C10480C10.5(C3:Q16)480,48
C10.6(C3⋊Q16) = C30.20D8φ: C3⋊Q16/Dic6C2 ⊆ Aut C10480C10.6(C3:Q16)480,65
C10.7(C3⋊Q16) = C60.1Q8φ: C3⋊Q16/C3×Q8C2 ⊆ Aut C10480C10.7(C3:Q16)480,167
C10.8(C3⋊Q16) = Dic309C4φ: C3⋊Q16/C3×Q8C2 ⊆ Aut C10480C10.8(C3:Q16)480,170
C10.9(C3⋊Q16) = Q82Dic15φ: C3⋊Q16/C3×Q8C2 ⊆ Aut C10480C10.9(C3:Q16)480,195
C10.10(C3⋊Q16) = C5×C6.Q16central extension (φ=1)480C10.10(C3:Q16)480,126
C10.11(C3⋊Q16) = C5×C6.SD16central extension (φ=1)480C10.11(C3:Q16)480,129
C10.12(C3⋊Q16) = C5×Q82Dic3central extension (φ=1)480C10.12(C3:Q16)480,154

׿
×
𝔽